qmk-firmware/quantum/audio/audio_pwm.c
2019-08-30 15:01:52 -07:00

596 lines
16 KiB
C

/* Copyright 2016 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <string.h>
//#include <math.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#include "print.h"
#include "audio.h"
#include "keymap.h"
#include "eeconfig.h"
#define PI 3.14159265
#define CPU_PRESCALER 8
// Timer Abstractions
// TIMSK3 - Timer/Counter #3 Interrupt Mask Register
// Turn on/off 3A interputs, stopping/enabling the ISR calls
#define ENABLE_AUDIO_COUNTER_3_ISR TIMSK3 |= _BV(OCIE3A)
#define DISABLE_AUDIO_COUNTER_3_ISR TIMSK3 &= ~_BV(OCIE3A)
// TCCR3A: Timer/Counter #3 Control Register
// Compare Output Mode (COM3An) = 0b00 = Normal port operation, OC3A disconnected from PC6
#define ENABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A |= _BV(COM3A1);
#define DISABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A &= ~(_BV(COM3A1) | _BV(COM3A0));
#define NOTE_PERIOD ICR3
#define NOTE_DUTY_CYCLE OCR3A
#ifdef PWM_AUDIO
# include "wave.h"
# define SAMPLE_DIVIDER 39
# define SAMPLE_RATE (2000000.0 / SAMPLE_DIVIDER / 2048)
// Resistor value of 1/ (2 * PI * 10nF * (2000000 hertz / SAMPLE_DIVIDER / 10)) for 10nF cap
float places[8] = {0, 0, 0, 0, 0, 0, 0, 0};
uint16_t place_int = 0;
bool repeat = true;
#endif
void delay_us(int count) {
while (count--) {
_delay_us(1);
}
}
int voices = 0;
int voice_place = 0;
float frequency = 0;
int volume = 0;
long position = 0;
float frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0};
int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0};
bool sliding = false;
float place = 0;
uint8_t* sample;
uint16_t sample_length = 0;
// float freq = 0;
bool playing_notes = false;
bool playing_note = false;
float note_frequency = 0;
float note_length = 0;
uint8_t note_tempo = TEMPO_DEFAULT;
float note_timbre = TIMBRE_DEFAULT;
uint16_t note_position = 0;
float (*notes_pointer)[][2];
uint16_t notes_count;
bool notes_repeat;
float notes_rest;
bool note_resting = false;
uint16_t current_note = 0;
uint8_t rest_counter = 0;
#ifdef VIBRATO_ENABLE
float vibrato_counter = 0;
float vibrato_strength = .5;
float vibrato_rate = 0.125;
#endif
float polyphony_rate = 0;
static bool audio_initialized = false;
audio_config_t audio_config;
uint16_t envelope_index = 0;
void audio_init() {
// Check EEPROM
if (!eeconfig_is_enabled()) {
eeconfig_init();
}
audio_config.raw = eeconfig_read_audio();
#ifdef PWM_AUDIO
PLLFRQ = _BV(PDIV2);
PLLCSR = _BV(PLLE);
while (!(PLLCSR & _BV(PLOCK)))
;
PLLFRQ |= _BV(PLLTM0); /* PCK 48MHz */
/* Init a fast PWM on Timer4 */
TCCR4A = _BV(COM4A0) | _BV(PWM4A); /* Clear OC4A on Compare Match */
TCCR4B = _BV(CS40); /* No prescaling => f = PCK/256 = 187500Hz */
OCR4A = 0;
/* Enable the OC4A output */
DDRC |= _BV(PORTC6);
DISABLE_AUDIO_COUNTER_3_ISR; // Turn off 3A interputs
TCCR3A = 0x0; // Options not needed
TCCR3B = _BV(CS31) | _BV(CS30) | _BV(WGM32); // 64th prescaling and CTC
OCR3A = SAMPLE_DIVIDER - 1; // Correct count/compare, related to sample playback
#else
// Set port PC6 (OC3A and /OC4A) as output
DDRC |= _BV(PORTC6);
DISABLE_AUDIO_COUNTER_3_ISR;
// TCCR3A / TCCR3B: Timer/Counter #3 Control Registers
// Compare Output Mode (COM3An) = 0b00 = Normal port operation, OC3A disconnected from PC6
// Waveform Generation Mode (WGM3n) = 0b1110 = Fast PWM Mode 14 (Period = ICR3, Duty Cycle = OCR3A)
// Clock Select (CS3n) = 0b010 = Clock / 8
TCCR3A = (0 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (0 << WGM30);
TCCR3B = (1 << WGM33) | (1 << WGM32) | (0 << CS32) | (1 << CS31) | (0 << CS30);
#endif
audio_initialized = true;
}
void stop_all_notes() {
if (!audio_initialized) {
audio_init();
}
voices = 0;
#ifdef PWM_AUDIO
DISABLE_AUDIO_COUNTER_3_ISR;
#else
DISABLE_AUDIO_COUNTER_3_ISR;
DISABLE_AUDIO_COUNTER_3_OUTPUT;
#endif
playing_notes = false;
playing_note = false;
frequency = 0;
volume = 0;
for (uint8_t i = 0; i < 8; i++) {
frequencies[i] = 0;
volumes[i] = 0;
}
}
void stop_note(float freq) {
if (playing_note) {
if (!audio_initialized) {
audio_init();
}
#ifdef PWM_AUDIO
freq = freq / SAMPLE_RATE;
#endif
for (int i = 7; i >= 0; i--) {
if (frequencies[i] == freq) {
frequencies[i] = 0;
volumes[i] = 0;
for (int j = i; (j < 7); j++) {
frequencies[j] = frequencies[j + 1];
frequencies[j + 1] = 0;
volumes[j] = volumes[j + 1];
volumes[j + 1] = 0;
}
break;
}
}
voices--;
if (voices < 0) voices = 0;
if (voice_place >= voices) {
voice_place = 0;
}
if (voices == 0) {
#ifdef PWM_AUDIO
DISABLE_AUDIO_COUNTER_3_ISR;
#else
DISABLE_AUDIO_COUNTER_3_ISR;
DISABLE_AUDIO_COUNTER_3_OUTPUT;
#endif
frequency = 0;
volume = 0;
playing_note = false;
}
}
}
#ifdef VIBRATO_ENABLE
float mod(float a, int b) {
float r = fmod(a, b);
return r < 0 ? r + b : r;
}
float vibrato(float average_freq) {
# ifdef VIBRATO_STRENGTH_ENABLE
float vibrated_freq = average_freq * pow(vibrato_lut[(int)vibrato_counter], vibrato_strength);
# else
float vibrated_freq = average_freq * vibrato_lut[(int)vibrato_counter];
# endif
vibrato_counter = mod((vibrato_counter + vibrato_rate * (1.0 + 440.0 / average_freq)), VIBRATO_LUT_LENGTH);
return vibrated_freq;
}
#endif
ISR(TIMER3_COMPA_vect) {
if (playing_note) {
#ifdef PWM_AUDIO
if (voices == 1) {
// SINE
OCR4A = pgm_read_byte(&sinewave[(uint16_t)place]) >> 2;
// SQUARE
// if (((int)place) >= 1024){
// OCR4A = 0xFF >> 2;
// } else {
// OCR4A = 0x00;
// }
// SAWTOOTH
// OCR4A = (int)place / 4;
// TRIANGLE
// if (((int)place) >= 1024) {
// OCR4A = (int)place / 2;
// } else {
// OCR4A = 2048 - (int)place / 2;
// }
place += frequency;
if (place >= SINE_LENGTH) place -= SINE_LENGTH;
} else {
int sum = 0;
for (int i = 0; i < voices; i++) {
// SINE
sum += pgm_read_byte(&sinewave[(uint16_t)places[i]]) >> 2;
// SQUARE
// if (((int)places[i]) >= 1024){
// sum += 0xFF >> 2;
// } else {
// sum += 0x00;
// }
places[i] += frequencies[i];
if (places[i] >= SINE_LENGTH) places[i] -= SINE_LENGTH;
}
OCR4A = sum;
}
#else
if (voices > 0) {
float freq;
if (polyphony_rate > 0) {
if (voices > 1) {
voice_place %= voices;
if (place++ > (frequencies[voice_place] / polyphony_rate / CPU_PRESCALER)) {
voice_place = (voice_place + 1) % voices;
place = 0.0;
}
}
# ifdef VIBRATO_ENABLE
if (vibrato_strength > 0) {
freq = vibrato(frequencies[voice_place]);
} else {
# else
{
# endif
freq = frequencies[voice_place];
}
} else {
if (frequency != 0 && frequency < frequencies[voices - 1] && frequency < frequencies[voices - 1] * pow(2, -440 / frequencies[voices - 1] / 12 / 2)) {
frequency = frequency * pow(2, 440 / frequency / 12 / 2);
} else if (frequency != 0 && frequency > frequencies[voices - 1] && frequency > frequencies[voices - 1] * pow(2, 440 / frequencies[voices - 1] / 12 / 2)) {
frequency = frequency * pow(2, -440 / frequency / 12 / 2);
} else {
frequency = frequencies[voices - 1];
}
# ifdef VIBRATO_ENABLE
if (vibrato_strength > 0) {
freq = vibrato(frequency);
} else {
# else
{
# endif
freq = frequency;
}
}
if (envelope_index < 65535) {
envelope_index++;
}
freq = voice_envelope(freq);
if (freq < 30.517578125) freq = 30.52;
NOTE_PERIOD = (int)(((double)F_CPU) / (freq * CPU_PRESCALER)); // Set max to the period
NOTE_DUTY_CYCLE = (int)((((double)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre); // Set compare to half the period
}
#endif
}
// SAMPLE
// OCR4A = pgm_read_byte(&sample[(uint16_t)place_int]);
// place_int++;
// if (place_int >= sample_length)
// if (repeat)
// place_int -= sample_length;
// else
// DISABLE_AUDIO_COUNTER_3_ISR;
if (playing_notes) {
#ifdef PWM_AUDIO
OCR4A = pgm_read_byte(&sinewave[(uint16_t)place]) >> 0;
place += note_frequency;
if (place >= SINE_LENGTH) place -= SINE_LENGTH;
#else
if (note_frequency > 0) {
float freq;
# ifdef VIBRATO_ENABLE
if (vibrato_strength > 0) {
freq = vibrato(note_frequency);
} else {
# else
{
# endif
freq = note_frequency;
}
if (envelope_index < 65535) {
envelope_index++;
}
freq = voice_envelope(freq);
NOTE_PERIOD = (int)(((double)F_CPU) / (freq * CPU_PRESCALER)); // Set max to the period
NOTE_DUTY_CYCLE = (int)((((double)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre); // Set compare to half the period
} else {
NOTE_PERIOD = 0;
NOTE_DUTY_CYCLE = 0;
}
#endif
note_position++;
bool end_of_note = false;
if (NOTE_PERIOD > 0)
end_of_note = (note_position >= (note_length / NOTE_PERIOD * 0xFFFF));
else
end_of_note = (note_position >= (note_length * 0x7FF));
if (end_of_note) {
current_note++;
if (current_note >= notes_count) {
if (notes_repeat) {
current_note = 0;
} else {
#ifdef PWM_AUDIO
DISABLE_AUDIO_COUNTER_3_ISR;
#else
DISABLE_AUDIO_COUNTER_3_ISR;
DISABLE_AUDIO_COUNTER_3_OUTPUT;
#endif
playing_notes = false;
return;
}
}
if (!note_resting && (notes_rest > 0)) {
note_resting = true;
note_frequency = 0;
note_length = notes_rest;
current_note--;
} else {
note_resting = false;
#ifdef PWM_AUDIO
note_frequency = (*notes_pointer)[current_note][0] / SAMPLE_RATE;
note_length = (*notes_pointer)[current_note][1] * (((float)note_tempo) / 100);
#else
envelope_index = 0;
note_frequency = (*notes_pointer)[current_note][0];
note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
#endif
}
note_position = 0;
}
}
if (!audio_config.enable) {
playing_notes = false;
playing_note = false;
}
}
void play_note(float freq, int vol) {
if (!audio_initialized) {
audio_init();
}
if (audio_config.enable && voices < 8) {
DISABLE_AUDIO_COUNTER_3_ISR;
// Cancel notes if notes are playing
if (playing_notes) stop_all_notes();
playing_note = true;
envelope_index = 0;
#ifdef PWM_AUDIO
freq = freq / SAMPLE_RATE;
#endif
if (freq > 0) {
frequencies[voices] = freq;
volumes[voices] = vol;
voices++;
}
#ifdef PWM_AUDIO
ENABLE_AUDIO_COUNTER_3_ISR;
#else
ENABLE_AUDIO_COUNTER_3_ISR;
ENABLE_AUDIO_COUNTER_3_OUTPUT;
#endif
}
}
void play_notes(float (*np)[][2], uint16_t n_count, bool n_repeat, float n_rest) {
if (!audio_initialized) {
audio_init();
}
if (audio_config.enable) {
DISABLE_AUDIO_COUNTER_3_ISR;
// Cancel note if a note is playing
if (playing_note) stop_all_notes();
playing_notes = true;
notes_pointer = np;
notes_count = n_count;
notes_repeat = n_repeat;
notes_rest = n_rest;
place = 0;
current_note = 0;
#ifdef PWM_AUDIO
note_frequency = (*notes_pointer)[current_note][0] / SAMPLE_RATE;
note_length = (*notes_pointer)[current_note][1] * (((float)note_tempo) / 100);
#else
note_frequency = (*notes_pointer)[current_note][0];
note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
#endif
note_position = 0;
#ifdef PWM_AUDIO
ENABLE_AUDIO_COUNTER_3_ISR;
#else
ENABLE_AUDIO_COUNTER_3_ISR;
ENABLE_AUDIO_COUNTER_3_OUTPUT;
#endif
}
}
#ifdef PWM_AUDIO
void play_sample(uint8_t* s, uint16_t l, bool r) {
if (!audio_initialized) {
audio_init();
}
if (audio_config.enable) {
DISABLE_AUDIO_COUNTER_3_ISR;
stop_all_notes();
place_int = 0;
sample = s;
sample_length = l;
repeat = r;
ENABLE_AUDIO_COUNTER_3_ISR;
}
}
#endif
void audio_toggle(void) {
audio_config.enable ^= 1;
eeconfig_update_audio(audio_config.raw);
}
void audio_on(void) {
audio_config.enable = 1;
eeconfig_update_audio(audio_config.raw);
}
void audio_off(void) {
audio_config.enable = 0;
eeconfig_update_audio(audio_config.raw);
}
#ifdef VIBRATO_ENABLE
// Vibrato rate functions
void set_vibrato_rate(float rate) { vibrato_rate = rate; }
void increase_vibrato_rate(float change) { vibrato_rate *= change; }
void decrease_vibrato_rate(float change) { vibrato_rate /= change; }
# ifdef VIBRATO_STRENGTH_ENABLE
void set_vibrato_strength(float strength) { vibrato_strength = strength; }
void increase_vibrato_strength(float change) { vibrato_strength *= change; }
void decrease_vibrato_strength(float change) { vibrato_strength /= change; }
# endif /* VIBRATO_STRENGTH_ENABLE */
#endif /* VIBRATO_ENABLE */
// Polyphony functions
void set_polyphony_rate(float rate) { polyphony_rate = rate; }
void enable_polyphony() { polyphony_rate = 5; }
void disable_polyphony() { polyphony_rate = 0; }
void increase_polyphony_rate(float change) { polyphony_rate *= change; }
void decrease_polyphony_rate(float change) { polyphony_rate /= change; }
// Timbre function
void set_timbre(float timbre) { note_timbre = timbre; }
// Tempo functions
void set_tempo(uint8_t tempo) { note_tempo = tempo; }
void decrease_tempo(uint8_t tempo_change) { note_tempo += tempo_change; }
void increase_tempo(uint8_t tempo_change) {
if (note_tempo - tempo_change < 10) {
note_tempo = 10;
} else {
note_tempo -= tempo_change;
}
}
//------------------------------------------------------------------------------
// Override these functions in your keymap file to play different tunes on
// startup and bootloader jump
__attribute__((weak)) void play_startup_tone() {}
__attribute__((weak)) void play_goodbye_tone() {}
//------------------------------------------------------------------------------