qmk-firmware/quantum/matrix.c

350 lines
10 KiB
C

/*
Copyright 2012-2018 Jun Wako, Jack Humbert, Yiancar
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "util.h"
#include "matrix.h"
#include "debounce.h"
#include "atomic_util.h"
#ifdef SPLIT_KEYBOARD
# include "split_common/split_util.h"
# include "split_common/transactions.h"
# define ROWS_PER_HAND (MATRIX_ROWS / 2)
#else
# define ROWS_PER_HAND (MATRIX_ROWS)
#endif
#ifdef DIRECT_PINS_RIGHT
# define SPLIT_MUTABLE
#else
# define SPLIT_MUTABLE const
#endif
#ifdef MATRIX_ROW_PINS_RIGHT
# define SPLIT_MUTABLE_ROW
#else
# define SPLIT_MUTABLE_ROW const
#endif
#ifdef MATRIX_COL_PINS_RIGHT
# define SPLIT_MUTABLE_COL
#else
# define SPLIT_MUTABLE_COL const
#endif
#ifndef MATRIX_INPUT_PRESSED_STATE
# define MATRIX_INPUT_PRESSED_STATE 0
#endif
#ifdef DIRECT_PINS
static SPLIT_MUTABLE pin_t direct_pins[ROWS_PER_HAND][MATRIX_COLS] = DIRECT_PINS;
#elif (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW)
# ifdef MATRIX_ROW_PINS
static SPLIT_MUTABLE_ROW pin_t row_pins[ROWS_PER_HAND] = MATRIX_ROW_PINS;
# endif // MATRIX_ROW_PINS
# ifdef MATRIX_COL_PINS
static SPLIT_MUTABLE_COL pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
# endif // MATRIX_COL_PINS
#endif
/* matrix state(1:on, 0:off) */
extern matrix_row_t raw_matrix[MATRIX_ROWS]; // raw values
extern matrix_row_t matrix[MATRIX_ROWS]; // debounced values
#ifdef SPLIT_KEYBOARD
// row offsets for each hand
extern uint8_t thisHand, thatHand;
#endif
// user-defined overridable functions
__attribute__((weak)) void matrix_init_pins(void);
__attribute__((weak)) void matrix_read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
__attribute__((weak)) void matrix_read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col, matrix_row_t row_shifter);
static inline void gpio_atomic_set_pin_output_low(pin_t pin) {
ATOMIC_BLOCK_FORCEON {
gpio_set_pin_output(pin);
gpio_write_pin_low(pin);
}
}
static inline void gpio_atomic_set_pin_output_high(pin_t pin) {
ATOMIC_BLOCK_FORCEON {
gpio_set_pin_output(pin);
gpio_write_pin_high(pin);
}
}
static inline void gpio_atomic_set_pin_input_high(pin_t pin) {
ATOMIC_BLOCK_FORCEON {
gpio_set_pin_input_high(pin);
}
}
static inline uint8_t readMatrixPin(pin_t pin) {
if (pin != NO_PIN) {
return (gpio_read_pin(pin) == MATRIX_INPUT_PRESSED_STATE) ? 0 : 1;
} else {
return 1;
}
}
// matrix code
#ifdef DIRECT_PINS
__attribute__((weak)) void matrix_init_pins(void) {
for (int row = 0; row < ROWS_PER_HAND; row++) {
for (int col = 0; col < MATRIX_COLS; col++) {
pin_t pin = direct_pins[row][col];
if (pin != NO_PIN) {
gpio_set_pin_input_high(pin);
}
}
}
}
__attribute__((weak)) void matrix_read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
// Start with a clear matrix row
matrix_row_t current_row_value = 0;
matrix_row_t row_shifter = MATRIX_ROW_SHIFTER;
for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++, row_shifter <<= 1) {
pin_t pin = direct_pins[current_row][col_index];
current_row_value |= readMatrixPin(pin) ? 0 : row_shifter;
}
// Update the matrix
current_matrix[current_row] = current_row_value;
}
#elif defined(DIODE_DIRECTION)
# if defined(MATRIX_ROW_PINS) && defined(MATRIX_COL_PINS)
# if (DIODE_DIRECTION == COL2ROW)
static bool select_row(uint8_t row) {
pin_t pin = row_pins[row];
if (pin != NO_PIN) {
gpio_atomic_set_pin_output_low(pin);
return true;
}
return false;
}
static void unselect_row(uint8_t row) {
pin_t pin = row_pins[row];
if (pin != NO_PIN) {
# ifdef MATRIX_UNSELECT_DRIVE_HIGH
gpio_atomic_set_pin_output_high(pin);
# else
gpio_atomic_set_pin_input_high(pin);
# endif
}
}
static void unselect_rows(void) {
for (uint8_t x = 0; x < ROWS_PER_HAND; x++) {
unselect_row(x);
}
}
__attribute__((weak)) void matrix_init_pins(void) {
unselect_rows();
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
if (col_pins[x] != NO_PIN) {
gpio_atomic_set_pin_input_high(col_pins[x]);
}
}
}
__attribute__((weak)) void matrix_read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
// Start with a clear matrix row
matrix_row_t current_row_value = 0;
if (!select_row(current_row)) { // Select row
return; // skip NO_PIN row
}
matrix_output_select_delay();
// For each col...
matrix_row_t row_shifter = MATRIX_ROW_SHIFTER;
for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++, row_shifter <<= 1) {
uint8_t pin_state = readMatrixPin(col_pins[col_index]);
// Populate the matrix row with the state of the col pin
current_row_value |= pin_state ? 0 : row_shifter;
}
// Unselect row
unselect_row(current_row);
matrix_output_unselect_delay(current_row, current_row_value != 0); // wait for all Col signals to go HIGH
// Update the matrix
current_matrix[current_row] = current_row_value;
}
# elif (DIODE_DIRECTION == ROW2COL)
static bool select_col(uint8_t col) {
pin_t pin = col_pins[col];
if (pin != NO_PIN) {
gpio_atomic_set_pin_output_low(pin);
return true;
}
return false;
}
static void unselect_col(uint8_t col) {
pin_t pin = col_pins[col];
if (pin != NO_PIN) {
# ifdef MATRIX_UNSELECT_DRIVE_HIGH
gpio_atomic_set_pin_output_high(pin);
# else
gpio_atomic_set_pin_input_high(pin);
# endif
}
}
static void unselect_cols(void) {
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
unselect_col(x);
}
}
__attribute__((weak)) void matrix_init_pins(void) {
unselect_cols();
for (uint8_t x = 0; x < ROWS_PER_HAND; x++) {
if (row_pins[x] != NO_PIN) {
gpio_atomic_set_pin_input_high(row_pins[x]);
}
}
}
__attribute__((weak)) void matrix_read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col, matrix_row_t row_shifter) {
bool key_pressed = false;
// Select col
if (!select_col(current_col)) { // select col
return; // skip NO_PIN col
}
matrix_output_select_delay();
// For each row...
for (uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++) {
// Check row pin state
if (readMatrixPin(row_pins[row_index]) == 0) {
// Pin LO, set col bit
current_matrix[row_index] |= row_shifter;
key_pressed = true;
} else {
// Pin HI, clear col bit
current_matrix[row_index] &= ~row_shifter;
}
}
// Unselect col
unselect_col(current_col);
matrix_output_unselect_delay(current_col, key_pressed); // wait for all Row signals to go HIGH
}
# else
# error DIODE_DIRECTION must be one of COL2ROW or ROW2COL!
# endif
# endif // defined(MATRIX_ROW_PINS) && defined(MATRIX_COL_PINS)
#else
# error DIODE_DIRECTION is not defined!
#endif
void matrix_init(void) {
#ifdef SPLIT_KEYBOARD
// Set pinout for right half if pinout for that half is defined
if (!isLeftHand) {
# ifdef DIRECT_PINS_RIGHT
const pin_t direct_pins_right[ROWS_PER_HAND][MATRIX_COLS] = DIRECT_PINS_RIGHT;
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
for (uint8_t j = 0; j < MATRIX_COLS; j++) {
direct_pins[i][j] = direct_pins_right[i][j];
}
}
# endif
# ifdef MATRIX_ROW_PINS_RIGHT
const pin_t row_pins_right[ROWS_PER_HAND] = MATRIX_ROW_PINS_RIGHT;
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
row_pins[i] = row_pins_right[i];
}
# endif
# ifdef MATRIX_COL_PINS_RIGHT
const pin_t col_pins_right[MATRIX_COLS] = MATRIX_COL_PINS_RIGHT;
for (uint8_t i = 0; i < MATRIX_COLS; i++) {
col_pins[i] = col_pins_right[i];
}
# endif
}
thisHand = isLeftHand ? 0 : (ROWS_PER_HAND);
thatHand = ROWS_PER_HAND - thisHand;
#endif
// initialize key pins
matrix_init_pins();
// initialize matrix state: all keys off
memset(matrix, 0, sizeof(matrix));
memset(raw_matrix, 0, sizeof(raw_matrix));
debounce_init(ROWS_PER_HAND);
matrix_init_kb();
}
#ifdef SPLIT_KEYBOARD
// Fallback implementation for keyboards not using the standard split_util.c
__attribute__((weak)) bool transport_master_if_connected(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
transport_master(master_matrix, slave_matrix);
return true; // Treat the transport as always connected
}
#endif
uint8_t matrix_scan(void) {
matrix_row_t curr_matrix[MATRIX_ROWS] = {0};
#if defined(DIRECT_PINS) || (DIODE_DIRECTION == COL2ROW)
// Set row, read cols
for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
matrix_read_cols_on_row(curr_matrix, current_row);
}
#elif (DIODE_DIRECTION == ROW2COL)
// Set col, read rows
matrix_row_t row_shifter = MATRIX_ROW_SHIFTER;
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++, row_shifter <<= 1) {
matrix_read_rows_on_col(curr_matrix, current_col, row_shifter);
}
#endif
bool changed = memcmp(raw_matrix, curr_matrix, sizeof(curr_matrix)) != 0;
if (changed) memcpy(raw_matrix, curr_matrix, sizeof(curr_matrix));
#ifdef SPLIT_KEYBOARD
changed = debounce(raw_matrix, matrix + thisHand, ROWS_PER_HAND, changed) | matrix_post_scan();
#else
changed = debounce(raw_matrix, matrix, ROWS_PER_HAND, changed);
matrix_scan_kb();
#endif
return (uint8_t)changed;
}