rename project files

This commit is contained in:
Joey Castillo 2021-12-05 23:06:25 -06:00
parent 616587a203
commit 316e1f292c
17 changed files with 1 additions and 552 deletions

View file

@ -45,7 +45,7 @@ These tiny “sensor boards” have a set outline, and the available area for yo
Getting code on the watch
-------------------------
The watch library in this repository is very work-in-progress, but it should allow you to get started. To create a new project, copy the “Sensor Watch Starter Project” and write your code in the app.c file.
The watch library in this repository is very work-in-progress, but it should allow you to get started. To create a new project, copy the “starter-project” folder in the apps folder, and write your code in the app.c file.
You will need to install [the GNU Arm Embedded Toolchain](https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads/) to build projects for the watch. The watch library has been tested with the `9-2019-q4-major` version and the `10.3-2021.07` versions.

View file

@ -1,380 +0,0 @@
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "watch.h"
#include "bme280.h"
#include "app.h"
ApplicationState application_state;
char buf[16] = {0};
/**
* @brief Zeroes out the application state struct.
*/
void app_init() {
memset(&application_state, 0, sizeof(application_state));
}
void app_wake_from_backup() {
// This app does not support BACKUP mode.
}
void app_setup() {
watch_enable_external_interrupts();
watch_register_interrupt_callback(BTN_MODE, cb_mode_pressed, INTERRUPT_TRIGGER_RISING);
watch_register_interrupt_callback(BTN_LIGHT, cb_light_pressed, INTERRUPT_TRIGGER_RISING);
watch_register_extwake_callback(BTN_ALARM, cb_alarm_pressed, true);
watch_enable_buzzer();
watch_enable_leds();
// pin A0 powers the sensor on this board.
watch_enable_digital_output(A0);
watch_set_pin_level(A0, true);
delay_ms(10);
watch_enable_i2c();
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_SOFTRESET, BME280_SOFT_RESET_CODE);
delay_ms(10);
application_state.dig_T1 = watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T1);
application_state.dig_T2 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T2);
application_state.dig_T3 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T3);
application_state.dig_H1 = watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H1);
application_state.dig_H2 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_H2);
application_state.dig_H3 = watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H3);
application_state.dig_H4 = ((int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H4) << 4) |
(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H4 + 1) & 0xF);
application_state.dig_H5 = ((int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H5 + 1) << 4) |
(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H5) >> 4);
application_state.dig_H6 = (int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H6);
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL_HUMID, BME280_CONTROL_HUMID_SAMPLING_NONE);
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL, BME280_CONTROL_TEMPERATURE_SAMPLING_X16 |
BME280_CONTROL_PRESSURE_SAMPLING_NONE |
BME280_CONTROL_MODE_FORCED);
watch_enable_display();
watch_rtc_register_tick_callback(cb_tick);
}
/**
* Nothing to do here.
*/
void app_prepare_for_standby() {
}
/**
* @todo restore the BME280's calibration values from backup memory
*/
void app_wake_from_standby() {
}
/**
* Displays the temperature and humidity on screen, or a string indicating no measurements are being taken.
*/
bool app_loop() {
// play a beep if the mode has changed in response to a user's press of the MODE button
if (application_state.mode_changed) {
// low note for nonzero case, high note for return to clock
watch_buzzer_play_note(application_state.mode ? BUZZER_NOTE_C7 : BUZZER_NOTE_C8, 100);
application_state.mode_changed = false;
}
// If the user is not in clock mode and the mode timeout has expired, return them to clock mode
if (application_state.mode != MODE_CLOCK && application_state.mode_ticks == 0) {
application_state.mode = MODE_CLOCK;
application_state.mode_changed = true;
}
// If the LED is off and should be on, turn it on
if (application_state.light_ticks > 0 && !application_state.led_on) {
watch_set_led_green();
application_state.led_on = true;
}
// if the LED is on and should be off, turn it off
if (application_state.led_on && application_state.light_ticks == 0) {
// unless the user is holding down the LIGHT button, in which case, give them more time.
if (watch_get_pin_level(BTN_LIGHT)) {
application_state.light_ticks = 3;
} else {
watch_set_led_off();
application_state.led_on = false;
}
}
switch (application_state.mode) {
case MODE_CLOCK:
do_clock_mode();
break;
case MODE_TEMP:
do_temp_mode();
break;
case MODE_LOG:
do_log_mode();
break;
case MODE_PREFS:
do_prefs_mode();
break;
case MODE_SET:
do_set_time_mode();
break;
case NUM_MODES:
// dummy case, just silences a warning
break;
}
application_state.mode_changed = false;
return true;
}
/**
* Reads the temperature from the BME280
* @param p_t_fine - an optional pointer to an int32_t; if provided, the t_fine measurement
* (required for humidity calculation) will be returned by reference.
* Pass in NULL if you do not care about this value.
* @return a float indicating the temperature in degrees celsius.
*/
float read_temperature(int32_t *p_t_fine) {
// read24 reads the bytes into a uint32 which works for little-endian values (MSB is 0)
uint32_t raw_data = watch_i2c_read24(BME280_ADDRESS, BME280_REGISTER_TEMP_DATA) >> 8;
// alas the sensor's register layout is big-endian-ish, with a nibble of zeroes at the end of the LSB.
// this line shuffles everything back into place (swaps LSB and MSB and shifts the zeroes off the end)
int32_t adc_value = (((raw_data >> 16) | (raw_data & 0xFF00) | (raw_data << 16)) & 0xFFFFFF) >> 4;
// this bit is cribbed from Adafruit's BME280 driver. support their open source efforts by buying some stuff!
int32_t var1 = ((((adc_value >> 3) - ((int32_t)application_state.dig_T1 << 1))) * ((int32_t)application_state.dig_T2)) >> 11;
int32_t var2 = (((((adc_value >> 4) - ((int32_t)application_state.dig_T1)) * ((adc_value >> 4) - ((int32_t)application_state.dig_T1))) >> 12) * ((int32_t)application_state.dig_T3)) >> 14;
int32_t t_fine = var1 + var2;
// if we got a pointer to a t_fine, return it by reference (for humidity calculation).
if (p_t_fine != NULL) *p_t_fine = t_fine;
if (application_state.is_fahrenheit) {
return (((t_fine * 5 + 128) >> 8) / 100.0) * 1.8 + 32;
} else {
return ((t_fine * 5 + 128) >> 8) / 100.0;
}
}
/**
* Reads the humidity from the BME280
* @param t_fine - the t_fine measurement from a call to read_temperature
* @return a float indicating the relative humidity as a percentage from 0-100.
* @todo the returned value is glitchy, need to fix.
*/
float read_humidity(int32_t t_fine) {
int32_t adc_value = watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_HUMID_DATA);
// again, cribbed from Adafruit's BME280 driver. they sell a great breakout board for this sensor!
int32_t v_x1_u32r = (t_fine - ((int32_t)76800));
v_x1_u32r = (((((adc_value << 14) - (((int32_t)application_state.dig_H4) << 20) - (((int32_t)application_state.dig_H5) * v_x1_u32r)) +
((int32_t)16384)) >> 15) * (((((((v_x1_u32r * ((int32_t)application_state.dig_H6)) >> 10) * (((v_x1_u32r * ((int32_t)application_state.dig_H3)) >> 11) +
((int32_t)32768))) >> 10) + ((int32_t)2097152)) * ((int32_t)application_state.dig_H2) + 8192) >> 14));
v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)application_state.dig_H1)) >> 4));
v_x1_u32r = (v_x1_u32r < 0) ? 0 : v_x1_u32r;
v_x1_u32r = (v_x1_u32r > 419430400) ? 419430400 : v_x1_u32r;
float h = (v_x1_u32r >> 12);
return h / 1024.0;
}
void log_data() {
watch_date_time date_time = watch_rtc_get_date_time();
uint8_t hour = date_time.unit.hour;
int8_t temperature = read_temperature(NULL);
for(int i = 0; i < MAX_DATA_POINTS - 1; i++) {
application_state.logged_data[i] = application_state.logged_data[i + 1];
}
application_state.logged_data[MAX_DATA_POINTS - 1].is_valid = true;
application_state.logged_data[MAX_DATA_POINTS - 1].hour = hour;
application_state.logged_data[MAX_DATA_POINTS - 1].temperature = temperature;
}
void do_clock_mode() {
watch_date_time date_time = watch_rtc_get_date_time();
const char months[12][3] = {"JA", "FE", "MR", "AR", "MA", "JN", "JL", "AU", "SE", "OC", "NO", "dE"};
watch_display_string((char *)months[date_time.unit.month - 1], 0);
sprintf(buf, "%2d%2d%02d%02d", date_time.unit.day, date_time.unit.hour, date_time.unit.minute, date_time.unit.second);
watch_display_string(buf, 2);
watch_set_colon();
}
void do_temp_mode() {
int32_t t_fine;
float temperature;
float humidity;
// take one reading
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL, BME280_CONTROL_TEMPERATURE_SAMPLING_X16 |
BME280_CONTROL_MODE_FORCED);
// wait for reading to finish
while(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_STATUS) & BME280_STATUS_UPDATING_MASK);
temperature = read_temperature(&t_fine);
humidity = read_humidity(t_fine);
if (application_state.show_humidity) {
sprintf(buf, "TE%2d%4.1f#%c", (int)(humidity / 10), temperature, application_state.is_fahrenheit ? 'F' : 'C');
} else {
sprintf(buf, "TE %4.1f#%c", temperature, application_state.is_fahrenheit ? 'F' : 'C');
}
watch_display_string(buf, 0);
watch_clear_colon();
}
void do_log_mode() {
bool is_valid = (uint8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].is_valid);
uint8_t hour = (uint8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].hour);
int8_t temperature = (int8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].temperature);
if (!is_valid) {
sprintf(buf, "LO%2d------", application_state.page);
watch_clear_colon();
} else {
sprintf(buf, "LO%2d%2d%4d", application_state.page, hour, temperature);
watch_set_colon();
}
watch_display_string(buf, 0);
}
void log_mode_handle_primary_button() {
application_state.page++;
if (application_state.page == MAX_DATA_POINTS) application_state.page = 0;
}
void do_prefs_mode() {
sprintf(buf, "PR CorF %c", application_state.is_fahrenheit ? 'F' : 'C');
watch_display_string(buf, 0);
watch_clear_colon();
}
void prefs_mode_handle_primary_button() {
// TODO: add rest of preferences (12/24, humidity, LED color, etc.)
// for now only one, C or F
}
void prefs_mode_handle_secondary_button() {
application_state.is_fahrenheit = !application_state.is_fahrenheit;
}
void do_set_time_mode() {
watch_date_time date_time = watch_rtc_get_date_time();
watch_display_string(" ", 0);
switch (application_state.page) {
case 0: // hour
sprintf(buf, "ST t%2d", date_time.unit.hour);
break;
case 1: // minute
sprintf(buf, "ST t %02d", date_time.unit.minute);
break;
case 2: // second
sprintf(buf, "ST t %02d", date_time.unit.second);
break;
case 3: // year
sprintf(buf, "ST d%2d", date_time.unit.year + 20);
break;
case 4: // month
sprintf(buf, "ST d %02d", date_time.unit.month);
break;
case 5: // day
sprintf(buf, "ST d %02d", date_time.unit.day);
break;
}
watch_display_string(buf, 0);
watch_set_pixel(1, 12); // required for T in position 1
}
void set_time_mode_handle_primary_button() {
application_state.page++;
if (application_state.page == 6) application_state.page = 0;
}
void set_time_mode_handle_secondary_button() {
watch_date_time date_time = watch_rtc_get_date_time();
const uint8_t days_in_month[12] = {31, 28, 31, 30, 31, 30, 30, 31, 30, 31, 30, 31};
switch (application_state.page) {
case 0: // hour
date_time.unit.hour = (date_time.unit.hour + 1) % 24;
break;
case 1: // minute
date_time.unit.minute = (date_time.unit.minute + 1) % 60;
break;
case 2: // second
date_time.unit.second = 0;
break;
case 3: // year
// only allow 2021-2030. fix this sometime next decade
date_time.unit.year = ((date_time.unit.year % 10) + 1);
break;
case 4: // month
date_time.unit.month = ((date_time.unit.month + 1) % 12);
break;
case 5: // day
date_time.unit.day = date_time.unit.day + 1;
// can't set to the 29th on a leap year. if it's february 29, set to 11:59 on the 28th.
// and it should roll over.
if (date_time.unit.day > days_in_month[date_time.unit.month - 1]) {
date_time.unit.day = 1;
}
break;
}
watch_rtc_set_date_time(date_time);
}
void cb_mode_pressed() {
application_state.mode = (application_state.mode + 1) % NUM_MODES;
application_state.mode_changed = true;
application_state.mode_ticks = 300;
application_state.page = 0;
}
void cb_light_pressed() {
switch (application_state.mode) {
case MODE_PREFS:
prefs_mode_handle_secondary_button();
break;
case MODE_SET:
set_time_mode_handle_secondary_button();
break;
default:
application_state.light_ticks = 3;
break;
}
}
void cb_alarm_pressed() {
switch (application_state.mode) {
case MODE_LOG:
log_mode_handle_primary_button();
break;
case MODE_PREFS:
prefs_mode_handle_primary_button();
break;
case MODE_SET:
set_time_mode_handle_primary_button();
break;
default:
break;
}
}
void cb_tick() {
// TODO: use alarm interrupt to trigger data acquisition.
watch_date_time date_time = watch_rtc_get_date_time();
if (date_time.unit.minute == 0 && date_time.unit.second == 0) {
log_data();
}
if (application_state.light_ticks > 0) {
application_state.light_ticks--;
}
if (application_state.mode_ticks > 0) {
application_state.mode_ticks--;
}
}

View file

@ -1,76 +0,0 @@
// Sensor Watch: Hiking Log Demo App
// This app displays a clock and temperature data from a BME280 temperature and humidiity sensor.
// It also logs up to 36 hours of temperature data for playback.
// You can use this app on backcountry treks: take the watch off at night and place it outside your tent.
// It will log overnight low temperatures for review in the morning and optional transfer to your notepad.
#define MAX_DATA_POINTS 36
typedef enum ApplicationMode {
MODE_CLOCK = 0, // Displays month, day and current time.
MODE_TEMP, // (TE) Displays temperature and an optional humidity reading (0-10 representing 0-100%)
MODE_LOG, // (LO) Plays back temperature data (temperature in seconds slot)
MODE_PREFS, // (PR) Allows setting options for the application
MODE_SET, // (ST) Set time and date
NUM_MODES // Last item in the enum, it's the number of cases.
} ApplicationMode;
typedef struct SensorReading {
bool is_valid;
uint8_t hour;
int8_t temperature;
} SensorReading;
typedef struct ApplicationState {
// Internal application state
ApplicationMode mode; // Current mode
bool mode_changed; // Lets us perform one-time setup for a given mode
uint16_t mode_ticks; // Timeout for the mode (returns to clock after timeout expires)
uint8_t light_ticks; // Timeout for the light
bool led_on; // Indicates that the LED is on
uint8_t page; // Tracks the current page in log, prefs or settings.
bool is_fahrenheit; // User preference, C or F
// Data logging
SensorReading logged_data[MAX_DATA_POINTS];
// User preference
bool show_humidity; // Indicates that the LED is on
// BME280 calibration values
uint16_t dig_T1;
int16_t dig_T2;
int16_t dig_T3;
uint8_t dig_H1;
int16_t dig_H2;
uint8_t dig_H3;
int16_t dig_H4;
int16_t dig_H5;
int8_t dig_H6;
} ApplicationState;
float read_temperature(int32_t *p_t_fine);
float read_humidity(int32_t t_fine);
void log_data();
void do_clock_mode();
void do_temp_mode();
void temp_mode_handle_primary_button();
void do_log_mode();
void log_mode_handle_primary_button();
void do_prefs_mode();
void prefs_mode_handle_primary_button();
void prefs_mode_handle_secondary_button();
void do_set_time_mode();
void set_time_mode_handle_primary_button();
void set_time_mode_handle_secondary_button();
void cb_light_pressed();
void cb_mode_pressed();
void cb_alarm_pressed();
void cb_tick();

View file

@ -1,85 +0,0 @@
#define BME280_ADDRESS (0x77)
#define BME280_SOFT_RESET_CODE (0xB6)
#define BME280_STATUS_UPDATING_MASK (1 << 3)
typedef enum BME280Register {
BME280_REGISTER_DIG_T1 = 0x88,
BME280_REGISTER_DIG_T2 = 0x8A,
BME280_REGISTER_DIG_T3 = 0x8C,
BME280_REGISTER_DIG_P1 = 0x8E,
BME280_REGISTER_DIG_P2 = 0x90,
BME280_REGISTER_DIG_P3 = 0x92,
BME280_REGISTER_DIG_P4 = 0x94,
BME280_REGISTER_DIG_P5 = 0x96,
BME280_REGISTER_DIG_P6 = 0x98,
BME280_REGISTER_DIG_P7 = 0x9A,
BME280_REGISTER_DIG_P8 = 0x9C,
BME280_REGISTER_DIG_P9 = 0x9E,
BME280_REGISTER_DIG_H1 = 0xA1,
BME280_REGISTER_DIG_H2 = 0xE1,
BME280_REGISTER_DIG_H3 = 0xE3,
BME280_REGISTER_DIG_H4 = 0xE4,
BME280_REGISTER_DIG_H5 = 0xE5,
BME280_REGISTER_DIG_H6 = 0xE7,
BME280_REGISTER_CHIPID = 0xD0,
BME280_REGISTER_VERSION = 0xD1,
BME280_REGISTER_SOFTRESET = 0xE0,
BME280_REGISTER_CAL26 = 0xE1,
BME280_REGISTER_CONTROL_HUMID = 0xF2,
BME280_REGISTER_STATUS = 0XF3,
BME280_REGISTER_CONTROL = 0xF4,
BME280_REGISTER_CONFIG = 0xF5,
BME280_REGISTER_PRESSURE_DATA = 0xF7,
BME280_REGISTER_TEMP_DATA = 0xFA,
BME280_REGISTER_HUMID_DATA = 0xFD
} BME280Register;
typedef enum BME280Control {
BME280_CONTROL_MODE_SLEEP = 0b00,
BME280_CONTROL_MODE_FORCED = 0b01,
BME280_CONTROL_MODE_NORMAL = 0b11,
BME280_CONTROL_PRESSURE_SAMPLING_NONE = 0b000 << 2,
BME280_CONTROL_PRESSURE_SAMPLING_X1 = 0b001 << 2,
BME280_CONTROL_PRESSURE_SAMPLING_X2 = 0b010 << 2,
BME280_CONTROL_PRESSURE_SAMPLING_X4 = 0b011 << 2,
BME280_CONTROL_PRESSURE_SAMPLING_X8 = 0b100 << 2,
BME280_CONTROL_PRESSURE_SAMPLING_X16 = 0b101 << 2,
BME280_CONTROL_TEMPERATURE_SAMPLING_NONE = 0b000 << 5,
BME280_CONTROL_TEMPERATURE_SAMPLING_X1 = 0b001 << 5,
BME280_CONTROL_TEMPERATURE_SAMPLING_X2 = 0b010 << 5,
BME280_CONTROL_TEMPERATURE_SAMPLING_X4 = 0b011 << 5,
BME280_CONTROL_TEMPERATURE_SAMPLING_X8 = 0b100 << 5,
BME280_CONTROL_TEMPERATURE_SAMPLING_X16 = 0b101 << 5
} BME280Control;
typedef enum BME280ControlHumidity {
BME280_CONTROL_HUMID_SAMPLING_NONE = 0b000,
BME280_CONTROL_HUMID_SAMPLING_X1 = 0b001,
BME280_CONTROL_HUMID_SAMPLING_X2 = 0b010,
BME280_CONTROL_HUMID_SAMPLING_X4 = 0b011,
BME280_CONTROL_HUMID_SAMPLING_X8 = 0b100,
BME280_CONTROL_HUMID_SAMPLING_X16 = 0b101
} BME280ControlHumidity;
typedef enum BME280Filter {
BME280_CONFIG_FILTER_OFF = 0b000 << 2,
BME280_CONFIG_FILTER_X2 = 0b001 << 2,
BME280_CONFIG_FILTER_X4 = 0b010 << 2,
BME280_CONFIG_FILTER_X8 = 0b011 << 2,
BME280_CONFIG_FILTER_X16 = 0b10 << 2,
BME280_CONFIG_STANDBY_MS_0_5 = 0b000 << 5,
BME280_CONFIG_STANDBY_MS_10 = 0b110 << 5,
BME280_CONFIG_STANDBY_MS_20 = 0b111 << 5,
BME280_CONFIG_STANDBY_MS_62_5 = 0b001 << 5,
BME280_CONFIG_STANDBY_MS_125 = 0b010 << 5,
BME280_CONFIG_STANDBY_MS_250 = 0b011 << 5,
BME280_CONFIG_STANDBY_MS_500 = 0b100 << 5,
BME280_CONFIG_STANDBY_MS_1000 = 0b101 << 5
} BME280Filter;
inline uint16_t make_le_16(uint16_t val) { return (val >> 8) | (val << 8); }

View file

@ -1,10 +0,0 @@
TOP = ../../..
include $(TOP)/make.mk
INCLUDES += \
-I../
SRCS += \
../app.c
include $(TOP)/rules.mk