Added ability to find best starting word

This commit is contained in:
David Volovskiy 2024-09-03 10:15:48 -04:00
parent dd719183cf
commit 4dedcb3a6d

View file

@ -1,4 +1,4 @@
import random, itertools, time, ast
import random, itertools, time, numpy
source_link = "https://matthewminer.name/projects/calculators/wordle-words-left/"
valid_list = [
@ -1091,12 +1091,12 @@ possible_list = [
alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
def most_used_letters(words=valid_list):
def most_used_letters(words=valid_list, letters=alphabet, print_result=True):
'''
Outputs how many times each letter is used in the words array.
'''
use_each_letter = {}
for i in alphabet:
for i in letters:
count = 0
for word in words:
for letter in word:
@ -1105,6 +1105,7 @@ def most_used_letters(words=valid_list):
break
use_each_letter[i] = count
use_each_letter = dict(sorted(use_each_letter.items(), key=lambda item: item[1], reverse=True))
if print_result:
print("Letter | Usage | Percent")
print("----------------------------")
for k in use_each_letter:
@ -1242,7 +1243,7 @@ def txt_of_all_letter_combos(num_letters_in_set, words=valid_list, min_letter_oc
prev = time.time()
start = prev
letters_to_ignore = ['D','M'] # Don't diplay well on the watch
letter_usage = most_used_letters(words=words)
letter_usage = most_used_letters(words=words, print_result=False)
for letter in letter_usage:
if (100 * letter_usage[letter])/len(words) < min_letter_occ_percent_to_consider:
letters_to_ignore.append(letter)
@ -1276,7 +1277,7 @@ def txt_of_all_letter_combos(num_letters_in_set, words=valid_list, min_letter_oc
dict_combos_counts = dict(sorted(dict_combos_counts.items(), key=lambda item: item[1], reverse=True))
most_common_key = next(iter(dict_combos_counts))
print(f"The Most Common Combo is: {most_common_key} with {dict_combos_counts[most_common_key]} words.")
print(f"The Most Common Combo for {num_letters_in_set} letters is: {most_common_key} with {dict_combos_counts[most_common_key]} words.")
# print_valid_words(ast.literal_eval(most_common_key)) # Uncomment to display the text it creates
if txt_out:
@ -1304,7 +1305,9 @@ def txt_of_all_letter_combos_differing_sizes(min=9, max=15, num_combos_print=20,
print(f"{key}, {item}")
def location_of_letters(letters=alphabet, list=valid_list):
def location_of_letters(letters=alphabet, list=valid_list, print_result=True):
letter_location_percentages = {}
if print_result:
print(" 1 2 3 4 5 ")
print("-----------------------------------------")
letters = sorted(letters)
@ -1314,15 +1317,62 @@ def location_of_letters(letters=alphabet, list=valid_list):
for i, char in enumerate(word):
if char.upper() == letter.upper():
location[i]+=1
location = [f"{round((100 * x) / sum(location)):2}%" for x in location]
print(f"{letter} : {location}")
location = [((100 * x) / sum(location)) for x in location]
letter_location_percentages[letter] = location
location_txt = [f"{round(x):2}%" for x in location]
if print_result:
print(f"{letter} : {location_txt}")
return letter_location_percentages
def best_first_word(letters=alphabet, list=valid_list, print_result=True, words_to_print=None):
'''
Word_good has every word with only unique letters as keys and that values are:
1. Take the usage of every letter, normalize the max to 100 and the min to 0.
2. Go through each letter in the word and see how often that letter appears in that exact location.
3. Multiply that occurrance in location with the normalized total usage.
4. Do this for each letter and add it all together.
Ex: SLATE
Normalized usage: S=38, L=42, A=79, T=46, E=100
S in position 1: 55%
L in position 2: 27%
A in position 3: 31%
T in position 4: 19%
E in position 5: 34%
Total = (38*55) + (42*27) + (79*31) + (46*19) + (100*35) = 10047
'''
valid_words = list_of_valid_words(letters, list)
letter_usage = most_used_letters(words=list, letters=letters, print_result=False)
a=[[max(letter_usage.values()),1],[min(letter_usage.values()),1]]
b=[100,0]
m,b = numpy.linalg.solve(a,b).tolist()
letter_usage_normalized = {key: ((m * value) + b) for key, value in letter_usage.items()}
loc_letters = location_of_letters(letters=letters, list=list, print_result=False)
word_good = {}
valid_words_unique = [word for word in valid_words if len(word) == len(set(word))]
for word in valid_words_unique:
usage = 0
for i, char in enumerate(word):
usage += loc_letters[char][i] * letter_usage_normalized[char]
word_good[word] = round(usage)
word_good = {k: v for k, v in sorted(word_good.items(), key=lambda item: item[1], reverse=True)}
if print_result:
print("Word, Usage Value")
print("------------------")
for i,[k,v] in enumerate(word_good.items()):
if words_to_print is not None and i+1 > words_to_print:
break
print(f"{k}, {v}")
return word_good
if __name__ == "__main__":
my_letters = ['A', 'C', 'E', 'H', 'I', 'L', 'N', 'O', 'P', 'R', 'S', 'T']
#print(f"{len(list_of_valid_words(my_letters, valid_list))} Words can be made with {my_letters}")
#most_used_letters()
#location_of_letters(my_letters)
#most_used_letters(letters=my_letters)
#location_of_letters(letters=my_letters)
print_valid_words(my_letters)
#txt_of_all_letter_combos_differing_sizes(max = 16, min=10)
#txt_of_all_letter_combos(14)
#best_first_word(letters=my_letters, print_result=True, words_to_print=10)