Merge pull request #8 from joeycastillo/external-interrupts

External interrupt refactor (closes #4, closes #5)
This commit is contained in:
joeycastillo 2021-08-26 16:32:42 -04:00 committed by GitHub
commit 6050aff235
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
11 changed files with 251 additions and 144 deletions

View file

@ -11,17 +11,16 @@ typedef enum ApplicationMode {
} ApplicationMode;
typedef enum LightColor {
COLOR_OFF = 0,
COLOR_RED = 1,
COLOR_GREEN = 2,
COLOR_YELLOW = 3
COLOR_RED = 0,
COLOR_GREEN,
COLOR_YELLOW
} LightColor;
typedef struct ApplicationState {
ApplicationMode mode;
LightColor color;
bool light_on;
uint8_t wake_count;
bool debounce_wait;
bool enter_deep_sleep;
} ApplicationState;
@ -62,7 +61,6 @@ void app_wake_from_deep_sleep() {
application_state.mode = (ApplicationMode)watch_get_backup_data(0);
application_state.color = (LightColor)watch_get_backup_data(1);
application_state.wake_count = (uint8_t)watch_get_backup_data(2) + 1;
application_state.debounce_wait = true;
}
/**
@ -80,10 +78,18 @@ void app_wake_from_deep_sleep() {
void app_setup() {
watch_enable_led(false); // enable LED with plain digital IO, not PWM
watch_enable_buttons();
watch_register_button_callback(BTN_LIGHT, cb_light_pressed);
watch_register_button_callback(BTN_MODE, cb_mode_pressed);
watch_register_button_callback(BTN_ALARM, cb_alarm_pressed);
watch_enable_external_interrupts();
// This starter app demonstrates three different ways of using the button interrupts.
// The BTN_MODE interrupt only triggers on a rising edge, so the mode changes once per press.
watch_register_interrupt_callback(BTN_MODE, cb_mode_pressed, INTERRUPT_TRIGGER_RISING);
// The BTN_LIGHT interrupt triggers on both rising and falling edges. The callback then checks
// the pin state when triggered: on a button down event, it increments the color and turns the
// LED on, whereas on a button up event, it turns the light off.
watch_register_interrupt_callback(BTN_LIGHT, cb_light_pressed, INTERRUPT_TRIGGER_BOTH);
// The BTN_ALARM callback is on an external wake pin; we can avoid using the EIC for this pin
// by using the extwake interrupt — but note that it can only trigger on either a rising or
// a falling edge, not both.
watch_register_extwake_callback(BTN_ALARM, cb_alarm_pressed, true);
watch_enable_display();
}
@ -95,7 +101,6 @@ void app_setup() {
* a press on one of the buttons).
*/
void app_prepare_for_sleep() {
application_state.debounce_wait = false;
}
/**
@ -112,19 +117,20 @@ void app_wake_from_sleep() {
*/
bool app_loop() {
// set the LED to a color
switch (application_state.color) {
case COLOR_OFF:
watch_set_led_off();
break;
case COLOR_RED:
watch_set_led_red();
break;
case COLOR_GREEN:
watch_set_led_green();
break;
case COLOR_YELLOW:
watch_set_led_yellow();
break;
if (application_state.light_on) {
switch (application_state.color) {
case COLOR_RED:
watch_set_led_red();
break;
case COLOR_GREEN:
watch_set_led_green();
break;
case COLOR_YELLOW:
watch_set_led_yellow();
break;
}
} else {
watch_set_led_off();
}
// Display the number of times we've woken up (modulo 32 to fit in 2 digits at top right)
@ -142,9 +148,6 @@ bool app_loop() {
break;
}
// Wait a moment to debounce button input
delay_ms(250);
if (application_state.enter_deep_sleep) {
application_state.enter_deep_sleep = false;
@ -171,20 +174,20 @@ bool app_loop() {
// Implementations for our callback functions. Replace these with whatever functionality
// your app requires.
void cb_light_pressed() {
if (application_state.debounce_wait) return;
application_state.debounce_wait = true;
application_state.color = (application_state.color + 1) % 4;
// always turn the light off when the pin goes low
if (watch_get_pin_level(BTN_LIGHT) == 0) {
application_state.light_on = false;
return;
}
application_state.color = (application_state.color + 1) % 3;
application_state.light_on = true;
}
void cb_mode_pressed() {
if (application_state.debounce_wait) return;
application_state.debounce_wait = true;
application_state.mode = (application_state.mode + 1) % 2;
}
void cb_alarm_pressed() {
if (application_state.debounce_wait) return;
application_state.debounce_wait = true;
// boo: http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_L22_Family_Errata_DS80000782B.pdf
// Reference 15010. doesn't say it applies to PA02 but it seems it does?
// anyway can't deep sleep now :(

View file

@ -61,7 +61,7 @@
// <i> Indicates whether the external interrupt 0 filter is enabled or not
// <id> eic_arch_filten0
#ifndef CONF_EIC_FILTEN0
#define CONF_EIC_FILTEN0 0
#define CONF_EIC_FILTEN0 1
#endif
// <q> External Interrupt 0 Event Output Enable
@ -103,7 +103,7 @@
// <i> Indicates whether the external interrupt 1 filter is enabled or not
// <id> eic_arch_filten1
#ifndef CONF_EIC_FILTEN1
#define CONF_EIC_FILTEN1 0
#define CONF_EIC_FILTEN1 1
#endif
// <q> External Interrupt 1 Event Output Enable
@ -138,7 +138,7 @@
// <e> Interrupt 2 Settings
// <id> eic_arch_enable_irq_setting2
#ifndef CONF_EIC_ENABLE_IRQ_SETTING2
#define CONF_EIC_ENABLE_IRQ_SETTING2 1
#define CONF_EIC_ENABLE_IRQ_SETTING2 0
#endif
// <q> External Interrupt 2 Filter Enable
@ -165,7 +165,7 @@
// <i> This defines input sense trigger
// <id> eic_arch_sense2
#ifndef CONF_EIC_SENSE2
#define CONF_EIC_SENSE2 EIC_NMICTRL_NMISENSE_RISE_Val
#define CONF_EIC_SENSE2 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 2 Asynchronous Edge Detection Mode
@ -187,7 +187,7 @@
// <i> Indicates whether the external interrupt 3 filter is enabled or not
// <id> eic_arch_filten3
#ifndef CONF_EIC_FILTEN3
#define CONF_EIC_FILTEN3 0
#define CONF_EIC_FILTEN3 1
#endif
// <q> External Interrupt 3 Event Output Enable
@ -229,7 +229,7 @@
// <i> Indicates whether the external interrupt 4 filter is enabled or not
// <id> eic_arch_filten4
#ifndef CONF_EIC_FILTEN4
#define CONF_EIC_FILTEN4 0
#define CONF_EIC_FILTEN4 1
#endif
// <q> External Interrupt 4 Event Output Enable
@ -306,7 +306,7 @@
// <e> Interrupt 6 Settings
// <id> eic_arch_enable_irq_setting6
#ifndef CONF_EIC_ENABLE_IRQ_SETTING6
#define CONF_EIC_ENABLE_IRQ_SETTING6 1
#define CONF_EIC_ENABLE_IRQ_SETTING6 0
#endif
// <q> External Interrupt 6 Filter Enable
@ -333,7 +333,7 @@
// <i> This defines input sense trigger
// <id> eic_arch_sense6
#ifndef CONF_EIC_SENSE6
#define CONF_EIC_SENSE6 EIC_NMICTRL_NMISENSE_RISE_Val
#define CONF_EIC_SENSE6 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 6 Asynchronous Edge Detection Mode
@ -348,7 +348,7 @@
// <e> Interrupt 7 Settings
// <id> eic_arch_enable_irq_setting7
#ifndef CONF_EIC_ENABLE_IRQ_SETTING7
#define CONF_EIC_ENABLE_IRQ_SETTING7 1
#define CONF_EIC_ENABLE_IRQ_SETTING7 0
#endif
// <q> External Interrupt 7 Filter Enable
@ -375,7 +375,7 @@
// <i> This defines input sense trigger
// <id> eic_arch_sense7
#ifndef CONF_EIC_SENSE7
#define CONF_EIC_SENSE7 EIC_NMICTRL_NMISENSE_RISE_Val
#define CONF_EIC_SENSE7 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 7 Asynchronous Edge Detection Mode

View file

@ -114,14 +114,14 @@
// <e> RTC Tamper Input 2 settings
// <id> tamper_input_2_settings
#ifndef CONF_TAMPER_INPUT_2_SETTINGS
#define CONF_TAMPER_INPUT_2_SETTINGS 1
#define CONF_TAMPER_INPUT_2_SETTINGS 0
#endif
// <q> Tamper Level Settings
// <i> Indicates Tamper input 2 level
// <id> tamper_level_2
#ifndef CONF_RTC_TAMP_LVL_2
#define CONF_RTC_TAMP_LVL_2 1
#define CONF_RTC_TAMP_LVL_2 0
#endif
// <o> RTC Tamper Input Action
@ -132,7 +132,7 @@
// <i> These bits define the RTC Tamper Input Action to be performed
// <id> rtc_tamper_input_action_2
#ifndef CONF_RTC_TAMPER_INACT_2
#define CONF_RTC_TAMPER_INACT_2 1
#define CONF_RTC_TAMPER_INACT_2 0
#endif
// <q> Debounce Enable for Tamper Input

View file

@ -44,11 +44,13 @@
#define BTN_LIGHT GPIO(GPIO_PORTA, 22)
#define BTN_MODE GPIO(GPIO_PORTA, 23)
#define BUZZER GPIO(GPIO_PORTA, 27)
#define D1 GPIO(GPIO_PORTB, 0)
#define A0 GPIO(GPIO_PORTB, 4)
#define A1 GPIO(GPIO_PORTB, 1)
#define A2 GPIO(GPIO_PORTB, 2)
#define A3 GPIO(GPIO_PORTB, 3)
#define A4 GPIO(GPIO_PORTB, 0)
#define D0 GPIO(GPIO_PORTB, 3)
#define A0 GPIO(GPIO_PORTB, 4)
#define D1 GPIO(GPIO_PORTB, 0)
#define BTN_ALARM GPIO(GPIO_PORTA, 2)
#define COM0 GPIO(GPIO_PORTB, 6)
#define COM1 GPIO(GPIO_PORTB, 7)

View file

@ -35,52 +35,6 @@ void ADC_0_init(void) {
adc_sync_init(&ADC_0, ADC, (void *)NULL);
}
void EXTERNAL_IRQ_0_init(void) {
hri_gclk_write_PCHCTRL_reg(GCLK, EIC_GCLK_ID, CONF_GCLK_EIC_SRC | (1 << GCLK_PCHCTRL_CHEN_Pos));
hri_mclk_set_APBAMASK_EIC_bit(MCLK);
// Set pin direction to input
gpio_set_pin_direction(BTN_ALARM, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(BTN_ALARM,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_DOWN);
gpio_set_pin_function(BTN_ALARM, PINMUX_PA02A_EIC_EXTINT2);
// Set pin direction to input
gpio_set_pin_direction(BTN_LIGHT, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(BTN_LIGHT,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_DOWN);
gpio_set_pin_function(BTN_LIGHT, PINMUX_PA22A_EIC_EXTINT6);
// Set pin direction to input
gpio_set_pin_direction(BTN_MODE, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(BTN_MODE,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_DOWN);
gpio_set_pin_function(BTN_MODE, PINMUX_PA23A_EIC_EXTINT7);
ext_irq_init();
}
void CALENDAR_0_CLOCK_init(void) {
hri_mclk_set_APBAMASK_RTC_bit(MCLK);
}

View file

@ -24,11 +24,6 @@
#include "watch.h"
// TODO: this should all live in watch_deepsleep.c, but right now watch_extint.c needs it
// because we're being too clever about the alarm button.
static void extwake_callback(uint8_t reason);
ext_irq_cb_t btn_alarm_callback;
#include "watch_rtc.c"
#include "watch_slcd.c"
#include "watch_extint.c"

View file

@ -22,8 +22,10 @@
* SOFTWARE.
*/
static void extwake_callback(uint8_t reason);
ext_irq_cb_t btn_alarm_callback;
ext_irq_cb_t a2_callback;
ext_irq_cb_t d1_callback;
ext_irq_cb_t a4_callback;
static void extwake_callback(uint8_t reason) {
if (reason & RTC_TAMPID_TAMPID2) {
@ -31,23 +33,59 @@ ext_irq_cb_t d1_callback;
} else if (reason & RTC_TAMPID_TAMPID1) {
if (a2_callback != NULL) a2_callback();
} else if (reason & RTC_TAMPID_TAMPID0) {
if (d1_callback != NULL) d1_callback();
if (a4_callback != NULL) a4_callback();
}
}
void watch_register_extwake_callback(uint8_t pin, ext_irq_cb_t callback) {
void watch_register_extwake_callback(uint8_t pin, ext_irq_cb_t callback, bool level) {
uint32_t pinmux;
if (pin == D1) {
d1_callback = callback;
pinmux = PINMUX_PB00G_RTC_IN0;
} else if (pin == A2) {
a2_callback = callback;
pinmux = PINMUX_PB02G_RTC_IN1;
} else {
return;
hri_rtc_tampctrl_reg_t config = hri_rtc_get_TAMPCTRL_reg(RTC, 0xFFFFFFFF);
switch (pin) {
case A4:
a4_callback = callback;
pinmux = PINMUX_PB00G_RTC_IN0;
config &= ~(3 << RTC_TAMPCTRL_IN0ACT_Pos);
config &= ~(1 << RTC_TAMPCTRL_TAMLVL0_Pos);
config |= 1 << RTC_TAMPCTRL_IN0ACT_Pos;
config |= 1 << RTC_TAMPCTRL_DEBNC0_Pos;
if (level) config |= 1 << RTC_TAMPCTRL_TAMLVL0_Pos;
break;
case A2:
a2_callback = callback;
pinmux = PINMUX_PB02G_RTC_IN1;
config &= ~(3 << RTC_TAMPCTRL_IN1ACT_Pos);
config &= ~(1 << RTC_TAMPCTRL_TAMLVL1_Pos);
config |= 1 << RTC_TAMPCTRL_IN1ACT_Pos;
config |= 1 << RTC_TAMPCTRL_DEBNC1_Pos;
if (level) config |= 1 << RTC_TAMPCTRL_TAMLVL1_Pos;
break;
case BTN_ALARM:
gpio_set_pin_pull_mode(pin, GPIO_PULL_DOWN);
btn_alarm_callback = callback;
pinmux = PINMUX_PA02G_RTC_IN2;
config &= ~(3 << RTC_TAMPCTRL_IN2ACT_Pos);
config &= ~(1 << RTC_TAMPCTRL_TAMLVL2_Pos);
config |= 1 << RTC_TAMPCTRL_IN2ACT_Pos;
config |= 1 << RTC_TAMPCTRL_DEBNC2_Pos;
if (level) config |= 1 << RTC_TAMPCTRL_TAMLVL2_Pos;
break;
default:
return;
}
gpio_set_pin_direction(pin, GPIO_DIRECTION_IN);
gpio_set_pin_function(pin, pinmux);
// disable the RTC
if (hri_rtcmode0_get_CTRLA_ENABLE_bit(RTC)) {
hri_rtcmode0_clear_CTRLA_ENABLE_bit(RTC);
hri_rtcmode0_wait_for_sync(RTC, RTC_MODE0_SYNCBUSY_ENABLE);
}
// update the configuration
hri_rtc_write_TAMPCTRL_reg(RTC, config);
// re-enable the RTC
hri_rtcmode0_set_CTRLA_ENABLE_bit(RTC);
_extwake_register_callback(&CALENDAR_0.device, extwake_callback);
}
@ -67,7 +105,7 @@ uint32_t watch_get_backup_data(uint8_t reg) {
void watch_enter_deep_sleep() {
// enable and configure the external wake interrupt, if not already set up.
if (btn_alarm_callback == NULL && a2_callback == NULL && d1_callback == NULL) {
if (btn_alarm_callback == NULL && a2_callback == NULL && a4_callback == NULL) {
gpio_set_pin_direction(BTN_ALARM, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(BTN_ALARM, GPIO_PULL_DOWN);
gpio_set_pin_function(BTN_ALARM, PINMUX_PA02G_RTC_IN2);

View file

@ -28,16 +28,24 @@
* deepest sleep mode available on the SAM L22
*/
/// @{
/** @brief Registers a callback on one of the RTC's external wake pins, which can wake the device
* from deep sleep mode.
* @param pin Either pin A2 or pin D1, the two external wake pins on the nine-pin connector.
* from deep sleep (aka BACKUP) mode.
* @param pin Either pin BTN_ALARM, A2, or A4. These are the three external wake pins. If the pin
* is BTN_ALARM, this function also enables an internal pull down on that pin.
* @param callback The callback to be called if this pin triggers outside of deep sleep mode.
* @param level The level you wish to scan for: true for rising, false for falling. Note that you
* cannot scan for both rising and falling edges like you can with the external interrupt
* pins; with the external wake interrupt, you can only get one or the other.
* @note When in normal or STANDBY mode, this will function much like a standard external interrupt
* situation: these pins will wake from standby, and your callback will be called. However,
* if the device enters deep sleep and one of these pins wakes the device, your callback
* WILL NOT be called.
* WILL NOT be called, as the device is basically waking from reset at that point.
* @warning As of the current SAM L22 silicon revision (rev B), the BTN_ALARM pin cannot wake the
* device from BACKUP mode. You can still use this function to register a BTN_ALARM interrupt
* in normal or STANDBY mode, but to wake from BACKUP, you will need to use pin A2 or A4.
*/
void watch_register_extwake_callback(uint8_t pin, ext_irq_cb_t callback);
void watch_register_extwake_callback(uint8_t pin, ext_irq_cb_t callback, bool level);
/** @brief Stores data in one of the RTC's backup registers, which retain their data in deep sleep.
* @param data An unsigned 32 bit integer with the data you wish to store.

View file

@ -22,18 +22,96 @@
* SOFTWARE.
*/
void watch_enable_buttons() {
EXTERNAL_IRQ_0_init();
void watch_enable_external_interrupts() {
// Configure EIC to use GCLK3 (the 32.768 kHz crystal)
hri_gclk_write_PCHCTRL_reg(GCLK, EIC_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK3_Val | (1 << GCLK_PCHCTRL_CHEN_Pos));
// Enable AHB clock for the EIC
hri_mclk_set_APBAMASK_EIC_bit(MCLK);
// call HAL's external interrupt init function
ext_irq_init();
}
void watch_register_button_callback(const uint8_t pin, ext_irq_cb_t callback) {
if (pin == BTN_ALARM) {
gpio_set_pin_direction(BTN_ALARM, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(BTN_ALARM, GPIO_PULL_DOWN);
gpio_set_pin_function(BTN_ALARM, PINMUX_PA02G_RTC_IN2);
btn_alarm_callback = callback;
_extwake_register_callback(&CALENDAR_0.device, extwake_callback);
} else {
ext_irq_register(pin, callback);
}
void watch_disable_external_interrupts() {
ext_irq_deinit();
hri_mclk_clear_APBAMASK_EIC_bit(MCLK);
}
void watch_register_interrupt_callback(const uint8_t pin, ext_irq_cb_t callback, watch_interrupt_trigger trigger) {
uint32_t pinmux;
hri_eic_config_reg_t config = hri_eic_get_CONFIG_reg(EIC, 0, 0xFFFFFFFF);
switch (pin) {
case A4:
// same steps for each: determine the correct pin mux...
pinmux = PINMUX_PB00A_EIC_EXTINT0;
// ...clear out the configuration for this EIC channel...
config &= ~EIC_CONFIG_SENSE0_Msk;
// ...and reconfigure it with our new trigger value.
config |= EIC_CONFIG_SENSE0(trigger);
break;
case A1:
pinmux = PINMUX_PB01A_EIC_EXTINT1;
config &= ~EIC_CONFIG_SENSE1_Msk;
config |= EIC_CONFIG_SENSE1(trigger);
break;
case BTN_ALARM:
gpio_set_pin_pull_mode(pin, GPIO_PULL_DOWN);
pinmux = PINMUX_PA02A_EIC_EXTINT2;
config &= ~EIC_CONFIG_SENSE2_Msk;
config |= EIC_CONFIG_SENSE2(trigger);
break;
case A2:
pinmux = PINMUX_PB02A_EIC_EXTINT2;
config &= ~EIC_CONFIG_SENSE2_Msk;
config |= EIC_CONFIG_SENSE2(trigger);
break;
case A3:
pinmux = PINMUX_PB03A_EIC_EXTINT3;
config &= ~EIC_CONFIG_SENSE3_Msk;
config |= EIC_CONFIG_SENSE3(trigger);
break;
case A0:
pinmux = PINMUX_PB04A_EIC_EXTINT4;
config &= ~EIC_CONFIG_SENSE4_Msk;
config |= EIC_CONFIG_SENSE4(trigger);
break;
case BTN_LIGHT:
gpio_set_pin_pull_mode(pin, GPIO_PULL_DOWN);
pinmux = PINMUX_PA22A_EIC_EXTINT6;
config &= ~EIC_CONFIG_SENSE6_Msk;
config |= EIC_CONFIG_SENSE6(trigger);
break;
case BTN_MODE:
gpio_set_pin_pull_mode(pin, GPIO_PULL_DOWN);
pinmux = PINMUX_PA23A_EIC_EXTINT7;
config &= ~EIC_CONFIG_SENSE7_Msk;
config |= EIC_CONFIG_SENSE7(trigger);
break;
default:
return;
}
gpio_set_pin_direction(pin, GPIO_DIRECTION_IN);
gpio_set_pin_function(pin, pinmux);
// EIC configuration register is enable-protected, so we have to disable it first...
if (hri_eic_get_CTRLA_reg(EIC, EIC_CTRLA_ENABLE)) {
hri_eic_clear_CTRLA_ENABLE_bit(EIC);
// ...and wait for it to synchronize.
hri_eic_wait_for_sync(EIC, EIC_SYNCBUSY_ENABLE);
}
// now update the configuration...
hri_eic_write_CONFIG_reg(EIC, 0, config);
// ...and re-enable the EIC
hri_eic_set_CTRLA_ENABLE_bit(EIC);
ext_irq_register(pin, callback);
}
inline void watch_register_button_callback(const uint8_t pin, ext_irq_cb_t callback) {
watch_register_interrupt_callback(pin, callback, INTERRUPT_TRIGGER_RISING);
}
inline void watch_enable_buttons() {
watch_enable_external_interrupts();
}

View file

@ -25,28 +25,57 @@
#include "hal_ext_irq.h"
/** @addtogroup buttons Buttons
* @brief This section covers functions related to the three buttons: Light, Mode and Alarm.
/** @addtogroup buttons Buttons & External Interrupts
* @brief This section covers functions related to the three buttons: Light, Mode and Alarm, as well as
* external interrupts from devices on the nine-pin connector.
* @details The buttons are the core input UI of the watch, and the way the user will interact with
* your application. They are active high, pulled down by the microcontroller, and triggered
* when one of the "pushers" brings a tab from the metal frame into contact with the edge
* of the board. Note that the buttons can only wake the watch from STANDBY mode (except maybe for the
* ALARM button; still working on that one). The external interrupt controller runs in
STANDBY mode, but it does not runin BACKUP mode; to wake from BACKUP, buttons will not cut it,
* of the board. Note that the buttons can only wake the watch from STANDBY mode, at least as
* of the current SAM L22 silicon revision. The external interrupt controller runs in STANDBY
* mode, but it does not run in BACKUP mode; to wake from BACKUP, buttons will not cut it.
*/
/// @{
/** @brief Enables the external interrupt controller for use with the buttons.
* @note The BTN_ALARM button runs off of an interrupt in the the RTC controller, not the EIC. If your
* application ONLY makes use of the alarm button, you do not need to call this method; you can
* save ~5µA by leaving the EIC disabled and only registering a callback for BTN_ALARM.
*/
void watch_enable_buttons();
/** @brief Configures an external interrupt on one of the button pins.
* @param pin One of pins BTN_LIGHT, BTN_MODE or BTN_ALARM.
///@brief An enum defining the types of interrupt trigger you wish to scan for.
typedef enum watch_interrupt_trigger {
INTERRUPT_TRIGGER_NONE = 0,
INTERRUPT_TRIGGER_RISING,
INTERRUPT_TRIGGER_FALLING,
INTERRUPT_TRIGGER_BOTH,
} watch_interrupt_trigger;
/// @brief Enables the external interrupt controller.
void watch_enable_external_interrupts();
/// @brief Disables the external interrupt controller.
void watch_disable_external_interrupts();
/** @brief Configures an external interrupt callback on one of the external interrupt pins.
* @details You can set one interrupt callback per pin, and you can monitor for a rising condition,
* a falling condition, or both. If you just want to detect a button press, register your
* interrupt with INTERRUPT_TRIGGER_RISING; if you want to detect an active-low interrupt
* signal from a device on the nine-pin connector, use INTERRUPT_TRIGGER_FALLING. If you
* want to detect both rising and falling conditions (i.e. button down and button up), use
* INTERRUPT_TRIGGER_BOTH and use watch_get_pin_level to check the pin level in your callback
* to determine which condition caused the interrupt.
* @param pin One of pins BTN_LIGHT, BTN_MODE, BTN_ALARM, or A0-A5. If the pin parameter matches one of
* the three button pins, this function will also enable an internal pull-down resistor. If
* the pin parameter is A0-A5, you are responsible for setting any required pull configuration
* using watch_enable_pull_up or watch_enable_pull_down.
* @param callback The function you wish to have called when the button is pressed.
* @note The BTN_ALARM button runs off of an interrupt in the the RTC controller, not the EIC. This
* implementation detail should not make any difference to your app,
* @param trigger The condition on which you wish to trigger: rising, falling or both.
* @note The alarm button and pin A2 share an external interrupt channel EXTINT[2]; you can only use one
* or the other. However! These pins both have an alternate method of triggering via the RTC tamper
* interrupt, which for A2 at least has the added benefit of being able to trigger in the low-power
* BACKUP mode.
* @see watch_register_extwake_callback
*/
void watch_register_interrupt_callback(const uint8_t pin, ext_irq_cb_t callback, watch_interrupt_trigger trigger);
__attribute__((deprecated("Use watch_register_interrupt_callback instead")))
void watch_register_button_callback(const uint8_t pin, ext_irq_cb_t callback);
__attribute__((deprecated("Use watch_enable_external_interrupts instead")))
void watch_enable_buttons();
/// @}

View file

@ -40,5 +40,5 @@ void _watch_init() {
// set up state
btn_alarm_callback = NULL;
a2_callback = NULL;
d1_callback = NULL;
a4_callback = NULL;
}