add data logging, more modes to BME280 project

This commit is contained in:
Joey Castillo 2021-08-18 13:50:09 -04:00
parent ecf853da6d
commit 8f0aeb0217
2 changed files with 333 additions and 76 deletions

View file

@ -1,38 +1,13 @@
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "watch.h"
#include "bme280.h"
typedef enum ApplicationMode {
MODE_TEMPERATURE = 0,
MODE_HUMIDITY,
MODE_OFF,
} ApplicationMode;
typedef struct ApplicationState {
ApplicationMode mode;
int light_ticks;
bool led_on;
bool needs_beep;
uint16_t dig_T1;
int16_t dig_T2;
int16_t dig_T3;
uint8_t dig_H1;
int16_t dig_H2;
uint8_t dig_H3;
int16_t dig_H4;
int16_t dig_H5;
int8_t dig_H6;
} ApplicationState;
#include "app.h"
ApplicationState application_state;
void cb_light_pressed();
void cb_mode_pressed();
void cb_tick();
float read_temperature(int32_t *p_t_fine);
float read_humidity(int32_t t_fine);
char buf[16] = {0};
/**
* @brief Zeroes out the application state struct.
@ -41,19 +16,22 @@ void app_init() {
memset(&application_state, 0, sizeof(application_state));
}
/**
* @todo stash the BME280's calibration values in backup memory so we don't have to ask again
*/
void app_wake_from_deep_sleep() {
// This app does not support deep sleep mode.
}
/**
* Enables the MODE button, the display and the sensor, and grabs calibration data.
*/
void app_setup() {
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
if (date_time.date.year < 2020) {
date_time.date.year = 2020;
watch_set_date_time(date_time);
}
watch_enable_buttons();
watch_register_button_callback(BTN_MODE, cb_mode_pressed);
watch_register_button_callback(BTN_LIGHT, cb_light_pressed);
watch_register_button_callback(BTN_ALARM, cb_alarm_pressed);
watch_enable_buzzer();
watch_enable_led(false);
@ -79,7 +57,7 @@ void app_setup() {
(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H5) >> 4);
application_state.dig_H6 = (int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H6);
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL_HUMID, BME280_CONTROL_HUMID_SAMPLING_X16);
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL_HUMID, BME280_CONTROL_HUMID_SAMPLING_NONE);
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL, BME280_CONTROL_TEMPERATURE_SAMPLING_X16 |
BME280_CONTROL_PRESSURE_SAMPLING_NONE |
BME280_CONTROL_MODE_FORCED);
@ -105,22 +83,28 @@ void app_wake_from_sleep() {
* Displays the temperature and humidity on screen, or a string indicating no measurements are being taken.
*/
bool app_loop() {
int32_t t_fine;
float temperature;
float humidity;
char buf[11] = {0};
if (application_state.needs_beep) {
watch_buzzer_play_note(BUZZER_NOTE_A6, 100);
application_state.needs_beep = false;
// play a beep if the mode has changed in response to a user's press of the MODE button
if (application_state.mode_changed) {
// low note for nonzero case, high note for return to clock
watch_buzzer_play_note(application_state.mode ? BUZZER_NOTE_C7 : BUZZER_NOTE_C8, 100);
application_state.mode_changed = false;
}
// If the user is not in clock mode and the mode timeout has expired, return them to clock mode
if (application_state.mode != MODE_CLOCK && application_state.mode_ticks == 0) {
application_state.mode = MODE_CLOCK;
application_state.mode_changed = true;
}
// If the LED is off and should be on, turn it on
if (application_state.light_ticks > 0 && !application_state.led_on) {
watch_set_led_yellow();
watch_set_led_green();
application_state.led_on = true;
}
// if the LED is on and should be off, turn it off
if (application_state.led_on && application_state.light_ticks == 0) {
// unless the user is holding down the LIGHT button, in which case, give them more time.
if (watch_get_pin_level(BTN_LIGHT)) {
application_state.light_ticks = 3;
} else {
@ -130,34 +114,31 @@ bool app_loop() {
}
switch (application_state.mode) {
case MODE_TEMPERATURE:
// take one reading
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL, BME280_CONTROL_TEMPERATURE_SAMPLING_X16 |
BME280_CONTROL_MODE_FORCED);
// wait for reading to finish
while(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_STATUS) & BME280_STATUS_UPDATING_MASK);
temperature = read_temperature(NULL);
sprintf(buf, "TE %4.1f#C", temperature);
watch_display_string(buf, 0);
watch_clear_colon();
case MODE_CLOCK:
do_clock_mode();
break;
case MODE_HUMIDITY:
// take one reading
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL, BME280_CONTROL_TEMPERATURE_SAMPLING_X16 |
BME280_CONTROL_MODE_FORCED);
// wait for reading to finish
while(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_STATUS) & BME280_STATUS_UPDATING_MASK);
temperature = read_temperature(&t_fine);
humidity = read_humidity(t_fine);
sprintf(buf, "HU rH %3d", (int)humidity);
watch_display_string(buf, 0);
watch_set_colon();
case MODE_TEMP:
do_temp_mode();
break;
case MODE_LOG:
do_log_mode();
break;
case MODE_PREFS:
do_prefs_mode();
break;
case MODE_SET:
do_set_time_mode();
break;
case NUM_MODES:
// dummy case, just silences a warning
break;
case MODE_OFF:
watch_display_string(" Sleep ", 0);
watch_clear_pixel(1, 16);
}
application_state.mode_changed = false;
delay_ms(250);
application_state.debounce_wait = false;
return true;
}
@ -183,7 +164,11 @@ float read_temperature(int32_t *p_t_fine) {
// if we got a pointer to a t_fine, return it by reference (for humidity calculation).
if (p_t_fine != NULL) *p_t_fine = t_fine;
return ((t_fine * 5 + 128) >> 8) / 100.0;
if (application_state.is_fahrenheit) {
return (((t_fine * 5 + 128) >> 8) / 100.0) * 1.8 + 32;
} else {
return ((t_fine * 5 + 128) >> 8) / 100.0;
}
}
/**
@ -208,17 +193,212 @@ float read_humidity(int32_t t_fine) {
return h / 1024.0;
}
void cb_mode_pressed() {
application_state.mode = (application_state.mode + 1) % 3;
application_state.needs_beep = true;
void log_data() {
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
uint8_t hour = date_time.time.sec;
int8_t temperature = read_temperature(NULL);
for(int i = 0; i < MAX_DATA_POINTS - 1; i++) {
application_state.logged_data[i] = application_state.logged_data[i + 1];
}
application_state.logged_data[MAX_DATA_POINTS - 1].is_valid = true;
application_state.logged_data[MAX_DATA_POINTS - 1].hour = hour;
application_state.logged_data[MAX_DATA_POINTS - 1].temperature = temperature;
}
void cb_tick() {
if (application_state.light_ticks > 0) {
application_state.light_ticks--;
void do_clock_mode() {
struct calendar_date_time date_time;
const char months[12][3] = {"JA", "FE", "MR", "AR", "MA", "JN", "JL", "AU", "SE", "OC", "NO", "dE"};
watch_get_date_time(&date_time);
watch_display_string((char *)months[date_time.date.month - 1], 0);
sprintf(buf, "%2d%2d%02d%02d", date_time.date.day, date_time.time.hour, date_time.time.min, date_time.time.sec);
watch_display_string(buf, 2);
watch_set_colon();
}
void do_temp_mode() {
int32_t t_fine;
float temperature;
float humidity;
// take one reading
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL, BME280_CONTROL_TEMPERATURE_SAMPLING_X16 |
BME280_CONTROL_MODE_FORCED);
// wait for reading to finish
while(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_STATUS) & BME280_STATUS_UPDATING_MASK);
temperature = read_temperature(&t_fine);
humidity = read_humidity(t_fine);
if (application_state.show_humidity) {
sprintf(buf, "TE%2d%4.1f#%c", (int)(humidity / 10), temperature), application_state.is_fahrenheit ? 'F' : 'C';
} else {
sprintf(buf, "TE %4.1f#%c", temperature, application_state.is_fahrenheit ? 'F' : 'C');
}
watch_display_string(buf, 0);
watch_clear_colon();
}
void do_log_mode() {
bool is_valid = (uint8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].is_valid);
uint8_t hour = (uint8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].hour);
int8_t temperature = (int8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].temperature);
if (!is_valid) {
sprintf(buf, "LO%2d------", application_state.page);
watch_clear_colon();
} else {
sprintf(buf, "LO%2d%2d%4d", application_state.page, hour, temperature);
watch_set_colon();
}
watch_display_string(buf, 0);
}
void log_mode_handle_primary_button() {
application_state.page++;
if (application_state.page == MAX_DATA_POINTS) application_state.page = 0;
}
void do_prefs_mode() {
sprintf(buf, "PR CorF %c", application_state.is_fahrenheit ? 'F' : 'C');
watch_display_string(buf, 0);
watch_clear_colon();
}
void prefs_mode_handle_primary_button() {
// TODO: add rest of preferences (12/24, humidity, LED color, etc.)
// for now only one, C or F
}
void prefs_mode_handle_secondary_button() {
application_state.is_fahrenheit = !application_state.is_fahrenheit;
}
void do_set_time_mode() {
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
watch_display_string(" ", 0);
switch (application_state.page) {
case 0: // hour
sprintf(buf, "ST t%2d", date_time.time.hour);
break;
case 1: // minute
sprintf(buf, "ST t %02d", date_time.time.min);
break;
case 2: // second
sprintf(buf, "ST t %02d", date_time.time.sec);
break;
case 3: // year
sprintf(buf, "ST d%2d", date_time.date.year - 2000);
break;
case 4: // month
sprintf(buf, "ST d %02d", date_time.date.month);
break;
case 5: // day
sprintf(buf, "ST d %02d", date_time.date.day);
break;
}
watch_display_string(buf, 0);
watch_set_pixel(1, 12); // required for T in position 1
}
void set_time_mode_handle_primary_button() {
application_state.page++;
if (application_state.page == 6) application_state.page = 0;
}
void set_time_mode_handle_secondary_button() {
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
const uint8_t days_in_month[12] = {31, 28, 31, 30, 31, 30, 30, 31, 30, 31, 30, 31};
switch (application_state.page) {
case 0: // hour
date_time.time.hour = (date_time.time.hour + 1) % 24;
break;
case 1: // minute
date_time.time.min = (date_time.time.min + 1) % 60;
break;
case 2: // second
date_time.time.sec = 0;
break;
case 3: // year
// only allow 2021-2030. fix this sometime next decade
date_time.date.year = ((date_time.date.year % 10) + 1) + 2020;
break;
case 4: // month
date_time.date.month = ((date_time.date.month + 1) % 12);
break;
case 5: // day
date_time.date.day = date_time.date.day + 1;
// can't set to the 29th on a leap year. if it's february 29, set to 11:59 on the 28th.
// and it should roll over.
if (date_time.date.day > days_in_month[date_time.date.month - 1]) {
date_time.date.day = 1;
}
break;
}
watch_set_date_time(date_time);
}
void cb_mode_pressed() {
if (application_state.debounce_wait) return;
application_state.debounce_wait = true;
application_state.mode = (application_state.mode + 1) % NUM_MODES;
application_state.mode_changed = true;
application_state.mode_ticks = 300;
application_state.page = 0;
}
void cb_light_pressed() {
application_state.light_ticks = 3;
if (application_state.debounce_wait) return;
application_state.debounce_wait = true;
switch (application_state.mode) {
case MODE_PREFS:
prefs_mode_handle_secondary_button();
break;
case MODE_SET:
set_time_mode_handle_secondary_button();
break;
default:
application_state.light_ticks = 3;
break;
}
}
void cb_alarm_pressed() {
if (application_state.debounce_wait) return;
application_state.debounce_wait = true;
switch (application_state.mode) {
case MODE_LOG:
log_mode_handle_primary_button();
break;
case MODE_PREFS:
prefs_mode_handle_primary_button();
break;
case MODE_SET:
set_time_mode_handle_primary_button();
break;
default:
break;
}
}
void cb_tick() {
// TODO: use alarm interrupt to trigger data acquisition.
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
if (date_time.time.min == 0 && date_time.time.sec == 0) {
log_data();
}
if (application_state.light_ticks > 0) {
application_state.light_ticks--;
}
if (application_state.mode_ticks > 0) {
application_state.mode_ticks--;
}
}

View file

@ -0,0 +1,77 @@
// Sensor Watch: Hiking Log Demo App
// This app displays a clock and temperature data from a BME280 temperature and humidiity sensor.
// It also logs up to 36 hours of temperature data for playback.
// You can use this app on backcountry treks: take the watch off at night and place it outside your tent.
// It will log overnight low temperatures for review in the morning and optional transfer to your notepad.
#define MAX_DATA_POINTS 36
typedef enum ApplicationMode {
MODE_CLOCK = 0, // Displays month, day and current time.
MODE_TEMP, // (TE) Displays temperature and an optional humidity reading (0-10 representing 0-100%)
MODE_LOG, // (LO) Plays back temperature data (temperature in seconds slot)
MODE_PREFS, // (PR) Allows setting options for the application
MODE_SET, // (ST) Set time and date
NUM_MODES // Last item in the enum, it's the number of cases.
} ApplicationMode;
typedef struct SensorReading {
bool is_valid;
uint8_t hour;
int8_t temperature;
} SensorReading;
typedef struct ApplicationState {
// Internal application state
ApplicationMode mode; // Current mode
bool mode_changed; // Lets us perform one-time setup for a given mode
uint16_t mode_ticks; // Timeout for the mode (returns to clock after timeout expires)
uint8_t light_ticks; // Timeout for the light
bool led_on; // Indicates that the LED is on
uint8_t page; // Tracks the current page in log, prefs or settings.
bool is_fahrenheit; // User preference, C or F
bool debounce_wait; // For debouncing button inputs
// Data logging
SensorReading logged_data[MAX_DATA_POINTS];
// User preference
bool show_humidity; // Indicates that the LED is on
// BME280 calibration values
uint16_t dig_T1;
int16_t dig_T2;
int16_t dig_T3;
uint8_t dig_H1;
int16_t dig_H2;
uint8_t dig_H3;
int16_t dig_H4;
int16_t dig_H5;
int8_t dig_H6;
} ApplicationState;
float read_temperature(int32_t *p_t_fine);
float read_humidity(int32_t t_fine);
void log_data();
void do_clock_mode();
void do_temp_mode();
void temp_mode_handle_primary_button();
void do_log_mode();
void log_mode_handle_primary_button();
void do_prefs_mode();
void prefs_mode_handle_primary_button();
void prefs_mode_handle_secondary_button();
void do_set_time_mode();
void set_time_mode_handle_primary_button();
void set_time_mode_handle_secondary_button();
void cb_light_pressed();
void cb_mode_pressed();
void cb_alarm_pressed();
void cb_tick();