rtc: support periodic ticks at intervals from 1 to 128 Hz

This commit is contained in:
Joey Castillo 2021-09-28 15:13:09 -04:00
parent 39a17c99b9
commit 9da9dfb7b2
3 changed files with 96 additions and 22 deletions

View file

@ -164,7 +164,7 @@ void watch_enter_shallow_sleep(char *message) {
_watch_disable_all_peripherals_except_slcd();
// disable tick interrupt
watch_disable_tick_callback();
watch_rtc_disable_all_tick_callbacks();
// disable brownout detector interrupt, which could inadvertently wake us up.
SUPC->INTENCLR.bit.BOD33DET = 1;
@ -190,7 +190,7 @@ void watch_enter_deep_sleep() {
// so let's do it!
watch_register_extwake_callback(BTN_ALARM, NULL, true);
watch_disable_tick_callback();
watch_rtc_disable_all_tick_callbacks();
_watch_disable_all_peripherals_except_slcd();
slcd_sync_deinit(&SEGMENT_LCD_0);
hri_mclk_clear_APBCMASK_SLCD_bit(SLCD);

View file

@ -24,7 +24,7 @@
#include "watch_rtc.h"
ext_irq_cb_t tick_callback;
ext_irq_cb_t tick_callbacks[8];
ext_irq_cb_t alarm_callback;
ext_irq_cb_t btn_alarm_callback;
ext_irq_cb_t a2_callback;
@ -70,15 +70,40 @@ watch_date_time watch_rtc_get_date_time() {
return retval;
}
void watch_register_tick_callback(ext_irq_cb_t callback) {
tick_callback = callback;
NVIC_ClearPendingIRQ(RTC_IRQn);
NVIC_EnableIRQ(RTC_IRQn);
RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_PER7;
void watch_rtc_register_1Hz_callback(ext_irq_cb_t callback) {
watch_rtc_register_tick_callback(callback, 1);
}
void watch_disable_tick_callback() {
RTC->MODE2.INTENCLR.reg = RTC_MODE2_INTENCLR_PER7;
void watch_rtc_disable_1Hz_callback() {
watch_rtc_disable_tick_callback(1);
}
void watch_rtc_register_tick_callback(ext_irq_cb_t callback, uint8_t period) {
// we told them, it has to be a power of 2.
if (__builtin_popcount(period) != 1) return;
// this left-justifies the period in a 32-bit integer.
uint32_t tmp = period << 24;
// now we can count the leading zeroes to get the value we need.
// 0x01 (1 Hz) will have 7 leading zeros for PER7. 0xF0 (128 Hz) will have no leading zeroes for PER0.
uint8_t per_n = __builtin_clz(tmp);
// this also maps nicely to an index for our list of tick callbacks.
tick_callbacks[per_n] = callback;
NVIC_ClearPendingIRQ(RTC_IRQn);
NVIC_EnableIRQ(RTC_IRQn);
RTC->MODE2.INTENSET.reg = 1 << per_n;
}
void watch_rtc_disable_tick_callback(uint8_t period) {
if (__builtin_popcount(period) != 1) return;
uint8_t per_n = __builtin_clz(period << 24);
RTC->MODE2.INTENCLR.reg = 1 << per_n;
}
void watch_rtc_disable_all_tick_callbacks() {
RTC->MODE2.INTENCLR.reg = 0xFF;
}
void watch_rtc_register_alarm_callback(ext_irq_cb_t callback, watch_date_time alarm_time, watch_rtc_alarm_match mask) {
@ -99,17 +124,20 @@ void RTC_Handler(void) {
uint16_t interrupt_status = RTC->MODE2.INTFLAG.reg;
uint16_t interrupt_enabled = RTC->MODE2.INTENSET.reg;
if ((interrupt_status & interrupt_enabled) & RTC_MODE2_INTFLAG_ALARM0) {
if (alarm_callback != NULL) {
alarm_callback();
if ((interrupt_status & interrupt_enabled) & RTC_MODE2_INTFLAG_PER_Msk) {
// handle the tick callback first, it's what we do the most.
// start from PER7, the 1 Hz tick.
for(int8_t i = 7; i >= 0; i--) {
if ((interrupt_status & interrupt_enabled) & (1 << i)) {
if (tick_callbacks[i] != NULL) {
tick_callbacks[i]();
}
RTC->MODE2.INTFLAG.reg = 1 << i;
break;
}
}
RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_ALARM0;
} else if ((interrupt_status & interrupt_enabled) & RTC_MODE2_INTFLAG_PER7) {
if (tick_callback != NULL) {
tick_callback();
}
RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_PER7;
} else if ((interrupt_status & interrupt_enabled) & RTC_MODE2_INTFLAG_TAMPER) {
// handle the extwake interrupts next.
uint8_t reason = RTC->MODE2.TAMPID.reg;
if (reason & RTC_TAMPID_TAMPID2) {
if (btn_alarm_callback != NULL) btn_alarm_callback();
@ -120,6 +148,12 @@ void RTC_Handler(void) {
}
RTC->MODE2.TAMPID.reg = reason;
RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_TAMPER;
} else if ((interrupt_status & interrupt_enabled) & RTC_MODE2_INTFLAG_ALARM0) {
// finally handle the alarm.
if (alarm_callback != NULL) {
alarm_callback();
}
RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_ALARM0;
}
}
@ -152,3 +186,10 @@ void watch_get_date_time(struct calendar_date_time *date_time) {
date_time->date.month = val.bit.MONTH;
date_time->date.year = val.bit.YEAR + WATCH_RTC_REFERENCE_YEAR;
}
void watch_register_tick_callback(ext_irq_cb_t callback) {
tick_callbacks[7] = callback;
NVIC_ClearPendingIRQ(RTC_IRQn);
NVIC_EnableIRQ(RTC_IRQn);
RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_PER7;
}

View file

@ -106,11 +106,37 @@ void watch_rtc_disable_alarm_callback();
* @param callback The function you wish to have called when the clock ticks. If you pass in NULL, the tick
* interrupt will still be enabled, but no callback function will be called.
*/
void watch_register_tick_callback(ext_irq_cb_t callback);
void watch_rtc_register_1Hz_callback(ext_irq_cb_t callback);
/** @brief Disables the tick callback.
/** @brief Disables the tick callback for the given period.
*/
void watch_disable_tick_callback();
void watch_rtc_disable_1Hz_callback();
/** @brief Registers a "tick" callback that will be called at a configurable period.
* @param callback The function you wish to have called when the clock ticks. If you pass in NULL, the tick
* interrupt will still be enabled, but no callback function will be called.
* @param period The frequency of the tick in Hz. **Must be a power of 2**, from 1 to 128 inclusive.
* @note A 1 Hz tick (@see watch_rtc_register_1Hz_callback) is suitable for most applications, in that it gives you a
* chance to update the display once a second an ideal update rate for a watch! If however you are displaying
* a value (such as an accelerometer output) that updates more frequently than once per second, you may want to
* tick at 16 or 32 Hz to update the screen more quickly. Just remember that the more frequent the tick, the more
* power your app will consume. Ideally you should enable the fast tick only when the user requires it (i.e. in
* response to an input event), and move back to the slow tick after some time.
*
* Also note that the RTC peripheral does not have sub-second resolution, so even if you set a 2 or 4 Hz interval,
* the system will not have any way of telling you where you are within a given second; watch_rtc_get_date_time
* will return the exact same timestamp until the second ticks over.
*/
void watch_rtc_register_tick_callback(ext_irq_cb_t callback, uint8_t period);
/** @brief Disables the tick callback for the given period.
* @param period The frequency of the tick you wish to disable, in Hz. **Must be a power of 2**, from 1 to 128.
*/
void watch_rtc_disable_tick_callback(uint8_t period);
/** @brief Disables all tick callbacks.
*/
void watch_rtc_disable_all_tick_callbacks();
/** @brief Sets the system date and time.
* @param date_time A struct representing the date and time you wish to set.
@ -124,5 +150,12 @@ void watch_set_date_time(struct calendar_date_time date_time);
__attribute__((deprecated("Use the watch_rtc_get_date_time function instead")))
void watch_get_date_time(struct calendar_date_time *date_time);
/** @brief Registers a "tick" callback that will be called once per second.
* @param callback The function you wish to have called when the clock ticks. If you pass in NULL, the tick
* interrupt will still be enabled, but no callback function will be called.
*/
__attribute__((deprecated("Use the watch_rtc_register_1Hz_callback function instead")))
void watch_register_tick_callback(ext_irq_cb_t callback);
/// @}
#endif