sensor-watch/movement/watch_faces/complication/planetary_hours_face.c
Matheus Afonso Martins Moreira a9d503b807 Revert PR #470 - implement automatic DST toggling
The DST code has not yet been fully tested, the upcoming movement
refactor is upon us and it will integrate with the micro timezone
library anyway. Revert it so that next can be merged into main.

This reverts commit ac5bf8cfce, reversing
changes made to 5a8a49a8c7.
2024-09-17 17:28:32 -03:00

408 lines
16 KiB
C

/*
* MIT License
*
* Copyright (c) 2023 Tobias Raayoni Last / @randogoth
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "sunriset.h"
#include "watch.h"
#include "watch_utility.h"
#include "planetary_hours_face.h"
#if __EMSCRIPTEN__
#include <emscripten.h>
#endif
// STATIC FUNCTIONS AND CONSTANTS /////////////////////////////////////////////
/** @brief Planetary rulers in the Chaldean order from slowest to fastest
* @details Planetary rulers in the Chaldean order from slowest to fastest:
* Jupiter, Mars, Sun, Venus, Mercury, Moon
*/
static const char planets[7][3] = {"Sa", "Ju", "Ma", "So", "Ve", "Me", "Lu"}; // Latin
static const char planetes[7][3] = {"Ch", "Ze", "Ar", "He", "Af", "Hr", "Se"}; // Greek
/** @brief Ruler of each weekday for easy lookup
*/
static const uint8_t plindex[7] = {3, 6, 2, 5, 1, 4, 0}; // day ruler index
/** @brief Astrological symbol for each planet
*/
static void _planetary_icon(uint8_t planet) {
watch_clear_pixel(0, 13);
watch_clear_pixel(0, 14);
watch_clear_pixel(1, 13);
watch_clear_pixel(1, 14);
watch_clear_pixel(1, 15);
watch_clear_pixel(2, 13);
watch_clear_pixel(2, 14);
watch_clear_pixel(2, 15);
switch (planet) {
case 0: // Saturn
watch_set_pixel(0, 14);
watch_set_pixel(2, 14);
watch_set_pixel(1, 15);
watch_set_pixel(2, 13);
break;
case 1: // Jupiter
watch_set_pixel(0, 14);
watch_set_pixel(1, 15);
watch_set_pixel(1, 14);
break;
case 2: // Mars
watch_set_pixel(2, 14);
watch_set_pixel(2, 15);
watch_set_pixel(1, 15);
watch_set_pixel(2, 13);
watch_set_pixel(1, 13);\
break;
case 3: // Sol
watch_set_pixel(0, 14);
watch_set_pixel(2, 14);
watch_set_pixel(1, 13);
watch_set_pixel(2, 13);
watch_set_pixel(0, 13);
watch_set_pixel(2, 15);
break;
case 4: // Venus
watch_set_pixel(0, 14);
watch_set_pixel(0, 13);
watch_set_pixel(1, 13);
watch_set_pixel(1, 15);
watch_set_pixel(1, 14);
break;
case 5: // Mercury
watch_set_pixel(0, 14);
watch_set_pixel(1, 13);
watch_set_pixel(1, 14);
watch_set_pixel(1, 15);
watch_set_pixel(2, 15);
break;
case 6: // Luna
watch_set_pixel(2, 14);
watch_set_pixel(2, 15);
watch_set_pixel(2, 13);
break;
}
}
/** @details A solar phase can be a day phase between sunrise and sunset or an alternating night phase.
* This function calculates the start and end of the current phase based on a given geographic location.
* It also calculates the start of the next following phase.
*/
static void _planetary_solar_phases(movement_settings_t *settings, planetary_hours_state_t *state) {
uint8_t phase, h;
double sunrise, sunset;
double hour_duration, next_hour_duration;
uint32_t now_epoch;
uint32_t sunrise_epoch_today, sunset_epoch_today, midnight_epoch_today;
uint32_t sunset_epoch_yesterday, midnight_epoch_yesterday;
uint32_t sunrise_epoch_tomorrow, sunset_epoch_tomorrow, midnight_epoch_tomorrow;
movement_location_t movement_location = (movement_location_t) watch_get_backup_data(1);
// check if we have a location. If not, display error
if (movement_location.reg == 0) {
watch_display_string(" no Loc", 0);
state->no_location = true;
return;
}
// location detected
state->no_location = false;
watch_date_time date_time = watch_rtc_get_date_time(); // the current local date / time
watch_date_time utc_now = watch_utility_date_time_convert_zone(date_time, movement_timezone_offsets[settings->bit.time_zone] * 60, 0); // the current date / time in UTC
watch_date_time scratch_time; // scratchpad, contains different values at different times
watch_date_time midnight;
scratch_time.reg = midnight.reg = utc_now.reg;
midnight.unit.hour = midnight.unit.minute = midnight.unit.second = 0; // start of the day at midnight
// get location coordinate
int16_t lat_centi = (int16_t)movement_location.bit.latitude;
int16_t lon_centi = (int16_t)movement_location.bit.longitude;
double lat = (double)lat_centi / 100.0;
double lon = (double)lon_centi / 100.0;
// save UTC offset
state->utc_offset = ((double)movement_timezone_offsets[settings->bit.time_zone]) / 60.0;
// calculate sunrise and sunset of current day in decimal hours after midnight
sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
// calculate sunrise and sunset UNIX timestamps
midnight_epoch_today = watch_utility_date_time_to_unix_time(midnight, 0);
sunrise_epoch_today = midnight_epoch_today + sunrise * 3600;
sunset_epoch_today = midnight_epoch_today + sunset * 3600;
// go back to yesterday and calculate sunset
midnight_epoch_yesterday = midnight_epoch_today - 86400;
scratch_time = watch_utility_date_time_from_unix_time(midnight_epoch_yesterday, 0);
sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
sunset_epoch_yesterday = midnight_epoch_yesterday + sunset * 3600;
// go to tomorrow and calculate sunrise and sunset
midnight_epoch_tomorrow = midnight_epoch_today + 86400;
scratch_time = watch_utility_date_time_from_unix_time(midnight_epoch_tomorrow, 0);
sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
sunrise_epoch_tomorrow = midnight_epoch_tomorrow + sunrise * 3600;
sunset_epoch_tomorrow = midnight_epoch_tomorrow + sunset * 3600;
// get UNIX epoch time
now_epoch = watch_utility_date_time_to_unix_time(utc_now, 0);
// by default we assume it is daytime (phase 1) between sunrise and sunset
phase = 1;
state->phase_start = sunrise_epoch_today;
state->phase_end = sunset_epoch_today;
state->phase_next = sunrise_epoch_tomorrow;
state->start_at_night = false;
// night time calculations
if ( now_epoch < sunrise_epoch_today && now_epoch < sunset_epoch_today ) phase = 0; // morning before dawn
if ( now_epoch > sunrise_epoch_today && now_epoch >= sunset_epoch_today ) phase = 2; // evening after dusk
// phase 0: we are before sunrise
if ( phase == 0) {
state->phase_start = sunset_epoch_yesterday;
state->phase_end = sunrise_epoch_today;
state->phase_next = sunset_epoch_today;
state->start_at_night = true;
}
// phase 2: we are after sunset
if ( phase == 2) {
state->phase_start = sunset_epoch_today;
state->phase_end = sunrise_epoch_tomorrow;
state->phase_next = sunset_epoch_tomorrow;
state->start_at_night = true;
}
// calculate the duration of a planetary hour during this and the next solar phase
hour_duration = ( state->phase_end - state->phase_start ) / 12.0;
next_hour_duration = ( state->phase_next - state->phase_end ) / 12.0;
// populate list of 24 planetary hour start points in UNIX timestamp format
// starting from the beginning of the current phase
for ( h = 0; h < 24; h++ ) {
if ( h < 12 ) state->planetary_hours[h] = state->phase_start + h * hour_duration; // current phase
else state->planetary_hours[h] = state->phase_end + ( h - 12 ) * next_hour_duration; // next phase
}
// initialize
state->hour = 0;
state->ruler = 0;
state->skip_to_current = true;
}
/** @details A planetary hour is one of exactly twelve hours of a solar phase. Its length varies.
* This function calculates the current planetary hour and divides it up into relative minutes and seconds.
* It also calculates the current planetary ruler of the hour and of the day.
*/
static void _planetary_hours(movement_settings_t *settings, planetary_hours_state_t *state) {
char buf[14];
char ruler[3];
uint8_t weekday, planet, planetary_hour;
uint32_t current_hour_epoch;
watch_date_time scratch_time;
bool set_leading_zero = false;
// check if we have a location. If not, display error
if ( state->no_location ) {
watch_display_string(" no Loc", 0);
return;
}
// get current time
watch_date_time date_time = watch_rtc_get_date_time(); // the current local date / time
watch_date_time utc_now = watch_utility_date_time_convert_zone(date_time, movement_timezone_offsets[settings->bit.time_zone] * 60, 0); // the current date / time in UTC
current_hour_epoch = watch_utility_date_time_to_unix_time(utc_now, 0);
// set the current planetary hour as default screen
if ( state->skip_to_current ) {
state->hour = ( current_hour_epoch - state->phase_start ) / (( state->phase_end - state->phase_start ) / 12.0);
state->skip_to_current = false;
}
// when current phase ends calculate the next phase
if ( watch_utility_date_time_to_unix_time(utc_now, 0) >= state->phase_end ) {
_planetary_solar_phases(settings, state);
return;
}
if (settings->bit.clock_mode_24h && !settings->bit.clock_24h_leading_zero) watch_set_indicator(WATCH_INDICATOR_24H);
// roll over hour iterator
if ( state->hour < 0 ) state->hour = 23;
if ( state->hour > 23 ) state->hour = 0;
if ( state->ruler < 0 ) state->hour = 2;
if ( state->ruler > 2 ) state->hour = 0;
// clear indicators
watch_clear_indicator(WATCH_INDICATOR_BELL);
watch_clear_indicator(WATCH_INDICATOR_LAP);
// display bell indicator when displaying the current planetary hour
if ( state->hour < 24 )
if ( current_hour_epoch >= state->planetary_hours[state->hour] && current_hour_epoch < state->planetary_hours[state->hour + 1]) {
watch_set_indicator(WATCH_INDICATOR_BELL);
}
// display LAP indicator when the hours of the next phase belong to the next day
if ( state->start_at_night == true && state->hour > 11 )
watch_set_indicator(WATCH_INDICATOR_LAP);
// determine weekday from start of current phase
scratch_time = watch_utility_date_time_from_unix_time(state->phase_start, 0);
scratch_time = watch_utility_date_time_convert_zone(scratch_time, 0, state->utc_offset * 3600);
weekday = watch_utility_get_iso8601_weekday_number(scratch_time.unit.year, scratch_time.unit.month, scratch_time.unit.day) - 1;
// which planetary hour are we in?
planetary_hour = state->hour % 12;
// accomodate night hour count
if ( state->hour < 12 ) {
if ( state->start_at_night ) {
planetary_hour += 12;
}
} else {
if ( state->start_at_night ) {
weekday = ( weekday + 1 ) % 7;
} else {
planetary_hour += 12;
}
}
// make datetime object for selected planetary hour
scratch_time = watch_utility_date_time_from_unix_time(state->planetary_hours[state->hour], 0);
scratch_time = watch_utility_date_time_convert_zone(scratch_time, 0, state->utc_offset * 3600);
// round minutes
if (scratch_time.unit.second < 30 && scratch_time.unit.minute > 0 ) scratch_time.unit.minute--;
else if ( scratch_time.unit.minute < 59 ) scratch_time.unit.minute++;
// if we are in 12 hour mode, do some cleanup
if (!settings->bit.clock_mode_24h) {
if (scratch_time.unit.hour < 12) {
watch_clear_indicator(WATCH_INDICATOR_PM);
} else {
watch_set_indicator(WATCH_INDICATOR_PM);
}
scratch_time.unit.hour %= 12;
if (scratch_time.unit.hour == 0) scratch_time.unit.hour = 12;
} else if (settings->bit.clock_24h_leading_zero && scratch_time.unit.hour < 10) {
set_leading_zero = true;
}
// planetary ruler of the hour
planet = ( plindex[weekday] + planetary_hour ) % 7;
// latin or greek ruler names or astrological symbol
if ( state->ruler == 0 ) strncpy(ruler, planets[planet], 3);
if ( state->ruler == 1 ) strncpy(ruler, planetes[planet], 3);
if ( state->ruler == 2 ) strncpy(ruler, " ", 3);
// display planetary time with ruler of the hour or ruler of the day
sprintf(buf, "%s%2d%2d%02d ", ruler, (planetary_hour % 24) + 1, scratch_time.unit.hour, scratch_time.unit.minute);
watch_set_colon();
watch_display_string(buf, 0);
if (set_leading_zero)
watch_display_string("0", 4);
if ( state->ruler == 2 ) _planetary_icon(planet);
}
// PUBLIC WATCH FACE FUNCTIONS ////////////////////////////////////////////////
void planetary_hours_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) {
(void) watch_face_index;
(void) settings;
if (*context_ptr == NULL) {
*context_ptr = malloc(sizeof(planetary_hours_state_t));
memset(*context_ptr, 0, sizeof(planetary_hours_state_t));
}
}
void planetary_hours_face_activate(movement_settings_t *settings, void *context) {
(void) settings;
if (watch_tick_animation_is_running()) watch_stop_tick_animation();
#if __EMSCRIPTEN__
int16_t browser_lat = EM_ASM_INT({ return lat; });
int16_t browser_lon = EM_ASM_INT({ return lon; });
if ((watch_get_backup_data(1) == 0) && (browser_lat || browser_lon)) {
movement_location_t browser_loc;
browser_loc.bit.latitude = browser_lat;
browser_loc.bit.longitude = browser_lon;
watch_store_backup_data(browser_loc.reg, 1);
}
#endif
planetary_hours_state_t *state = (planetary_hours_state_t *)context;
_planetary_solar_phases(settings, state);
}
bool planetary_hours_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
planetary_hours_state_t *state = (planetary_hours_state_t *)context;
switch (event.event_type) {
case EVENT_ACTIVATE:
// Show your initial UI here.
watch_clear_indicator(WATCH_INDICATOR_PM);
watch_clear_indicator(WATCH_INDICATOR_24H);
_planetary_hours(settings, state);
break;
case EVENT_LIGHT_BUTTON_UP:
state->ruler = (state->ruler + 1) % 3;
_planetary_hours(settings, state);
break;
case EVENT_LIGHT_LONG_PRESS:
state->skip_to_current = true;
_planetary_hours(settings, state);
break;
case EVENT_ALARM_BUTTON_UP:
state->hour++;
_planetary_hours(settings, state);
break;
case EVENT_ALARM_LONG_PRESS:
state->hour--;
_planetary_hours(settings, state);
break;
default:
return movement_default_loop_handler(event, settings);
}
return true;
}
void planetary_hours_face_resign(movement_settings_t *settings, void *context) {
(void) settings;
(void) context;
}