sensor-watch/movement/watch_faces/complication/simple_calculator_face.c

466 lines
16 KiB
C

/*
* MIT License
*
* Copyright (c) 2024 Patrick McGuire
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "simple_calculator_face.h"
void simple_calculator_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) {
(void) settings;
(void) watch_face_index;
if (*context_ptr == NULL) {
*context_ptr = malloc(sizeof(simple_calculator_state_t));
memset(*context_ptr, 0, sizeof(simple_calculator_state_t));
}
}
static void reset_to_zero(calculator_number_t *number) {
number->negative = false;
number->hundredths = 0;
number->tenths = 0;
number->ones = 0;
number->tens = 0;
number->hundreds = 0;
number->thousands = 0;
}
void simple_calculator_face_activate(movement_settings_t *settings, void *context) {
(void) settings;
simple_calculator_state_t *state = (simple_calculator_state_t *)context;
state->placeholder = PLACEHOLDER_ONES;
state->mode = MODE_ENTERING_FIRST_NUM;
reset_to_zero(&state->second_num);
reset_to_zero(&state->result);
movement_request_tick_frequency(4);
}
static void increment_placeholder(calculator_number_t *number, calculator_placeholder_t placeholder) {
uint8_t *digits[] = {
&number->hundredths,
&number->tenths,
&number->ones,
&number->tens,
&number->hundreds,
&number->thousands
};
*digits[placeholder] = (*digits[placeholder] + 1) % 10;
}
static float convert_to_float(calculator_number_t number) {
float result = 0.0;
// Add the whole number portion
result += number.thousands * 1000.0f;
result += number.hundreds * 100.0f;
result += number.tens * 10.0f;
result += number.ones * 1.0f;
// Add the fractional portion
result += number.tenths * 0.1f;
result += number.hundredths * 0.01f;
// Round to nearest hundredth
result = roundf(result * 100) / 100;
// Handle negative numbers
if (number.negative) result = -result;
//printf("convert_to_float results = %f\n", result); // For debugging
return result;
}
static char* update_display_number(calculator_number_t *number, char *display_string, uint8_t which_num) {
char sign = ' ';
if (number->negative) sign = '-';
sprintf(display_string, "CA%d%c%d%d%d%d%d%d",
which_num,
sign,
number->thousands,
number->hundreds,
number->tens,
number->ones,
number->tenths,
number->hundredths);
return display_string;
}
static void set_operation(simple_calculator_state_t *state) {
switch (state->operation) {
case OP_ADD:
watch_display_string(" Add", 0);
break;
case OP_SUB:
watch_display_string(" sub", 0);
break;
case OP_MULT:
watch_display_string(" n&ul", 0);
break;
case OP_DIV:
watch_display_string(" div", 0);
break;
case OP_ROOT:
watch_display_string(" root", 0);
break;
case OP_POWER:
watch_display_string(" pow", 0);
break;
}
}
static void cycle_operation(simple_calculator_state_t *state) {
state->operation = (state->operation + 1) % OPERATIONS_COUNT; // Assuming there are 6 operations
}
static calculator_number_t convert_to_string(float number) {
calculator_number_t result;
// Handle negative numbers
if (number < 0) {
number = -number;
result.negative = true;
} else result.negative = false;
// Get each digit from each placeholder
int int_part = (int)number;
float decimal_part_float = ((number - int_part) * 100); // two decimal places
//printf("decimal_part_float = %f\n", decimal_part_float); //For debugging
int decimal_part = round(decimal_part_float);
//printf("decimal_part = %d\n", decimal_part); //For debugging
result.thousands = int_part / 1000 % 10;
result.hundreds = int_part / 100 % 10;
result.tens = int_part / 10 % 10;
result.ones = int_part % 10;
result.tenths = decimal_part / 10 % 10;
result.hundredths = decimal_part % 10;
return result;
}
// This is the main function for setting the first_num and second_num
// WISH: there must be a way to pass less to this function?
static void set_number(calculator_number_t *number, calculator_placeholder_t placeholder, char *display_string, char *temp_display_string, movement_event_t event, uint8_t which_num) {
// Create the display index
uint8_t display_index;
// Update display string with current number and copy into temp string
update_display_number(number, display_string, which_num);
strcpy(temp_display_string, display_string);
// Determine the display index based on the placeholder
display_index = 9 - placeholder;
// Blink selected placeholder
// Check if `event.subsecond` is even
if (event.subsecond % 2 == 0) {
// Replace the character at the index corresponding to the current placeholder with a space
temp_display_string[display_index] = ' ';
}
// Display the (possibly modified) string
watch_display_string(temp_display_string, 0);
}
static void view_results(simple_calculator_state_t *state, char *display_string) {
// Initialize float variables to do the math
float first_num_float, second_num_float, result_float = 0.0f;
// Convert the passed numbers to floats
first_num_float = convert_to_float(state->first_num);
second_num_float = convert_to_float(state->second_num);
// Perform the calculation based on the selected operation
switch (state->operation) {
case OP_ADD:
result_float = first_num_float + second_num_float;
break;
case OP_SUB:
result_float = first_num_float - second_num_float;
break;
case OP_MULT:
result_float = first_num_float * second_num_float;
break;
case OP_DIV:
if (second_num_float != 0) {
result_float = first_num_float / second_num_float;
} else {
state->mode = MODE_ERROR;
return;
}
break;
case OP_ROOT:
if (first_num_float >= 0) {
result_float = sqrtf(first_num_float);
} else {
state->mode = MODE_ERROR;
return;
}
break;
case OP_POWER:
result_float = powf(first_num_float, second_num_float);
break;
default:
result_float = 0.0f;
break;
}
// Be sure the result can fit on the watch display, else error
if (result_float > 9999.99 || result_float < -9999.99) {
state->mode = MODE_ERROR;
return;
}
result_float = roundf(result_float * 100.0f) / 100.0f; // Might not be needed
//printf("result as float = %f\n", result_float); // For debugging
// Convert the float result to a string
// This isn't strictly necessary, but allows easily reusing the result as
// the next calculation's first_num
state->result = convert_to_string(result_float);
// Update the display with the result
update_display_number(&state->result, display_string, 3);
//printf("display_string = %s\n", display_string); // For debugging
watch_display_string(display_string, 0);
}
// Used both when returning from errors and when long pressing MODE
static void reset_all(simple_calculator_state_t *state) {
reset_to_zero(&state->first_num);
reset_to_zero(&state->second_num);
state->mode = MODE_ENTERING_FIRST_NUM;
state->operation = OP_ADD;
state->placeholder = PLACEHOLDER_ONES;
}
bool simple_calculator_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
simple_calculator_state_t *state = (simple_calculator_state_t *)context;
char display_string[10];
char temp_display_string[10]; // Temporary buffer for blinking effect
switch (event.event_type) {
case EVENT_ACTIVATE:
case EVENT_TICK:
switch (state->mode) {
case MODE_ENTERING_FIRST_NUM:
// See the WISH for this function above
set_number(&state->first_num,
state->placeholder,
display_string,
temp_display_string,
event,
1);
break;
case MODE_CHOOSING:
set_operation(state);
break;
case MODE_ENTERING_SECOND_NUM:
// If doing a square root calculation, skip to results
if (state->operation == OP_ROOT) {
state->mode = MODE_VIEW_RESULTS;
} else {
// See the WISH for this function above
set_number(&state->second_num,
state->placeholder,
display_string,
temp_display_string,
event,
2);
}
break;
case MODE_VIEW_RESULTS:
view_results(state, display_string);
break;
case MODE_ERROR:
watch_display_string("CA Error ", 0);
break;
}
break;
case EVENT_LIGHT_BUTTON_DOWN:
break;
case EVENT_LIGHT_BUTTON_UP:
switch (state->mode) {
case MODE_ENTERING_FIRST_NUM:
case MODE_ENTERING_SECOND_NUM:
// Move to the next placeholder when the light button is pressed
state->placeholder = (state->placeholder + 1) % MAX_PLACEHOLDERS; // Loop back to the start after PLACEHOLDER_THOUSANDS
break;
case MODE_CHOOSING:
cycle_operation(state);
break;
case MODE_ERROR:
reset_all(state);
break;
case MODE_VIEW_RESULTS:
break;
}
break;
case EVENT_LIGHT_LONG_PRESS:
switch (state->mode) {
case MODE_ENTERING_FIRST_NUM:
// toggle negative on state->first_num
state->first_num.negative = !state->first_num.negative;
break;
case MODE_ENTERING_SECOND_NUM:
// toggle negative on state->second_num
state->second_num.negative = !state->second_num.negative;
break;
case MODE_ERROR:
reset_all(state);
break;
case MODE_CHOOSING:
case MODE_VIEW_RESULTS:
break;
}
break;
case EVENT_ALARM_BUTTON_UP:
switch (state->mode) {
case MODE_ENTERING_FIRST_NUM:
// Increment the digit in the current placeholder
increment_placeholder(&state->first_num, state->placeholder);
update_display_number(&state->first_num, display_string, 1);
//printf("display_string = %s\n", display_string); // For debugging
break;
case MODE_CHOOSING:
// Confirm and select the current operation
state->mode = MODE_ENTERING_SECOND_NUM;
break;
case MODE_ENTERING_SECOND_NUM:
// Increment the digit in the current placeholder
increment_placeholder(&state->second_num, state->placeholder);
update_display_number(&state->second_num, display_string, 2);
//printf("display_string = %s\n", display_string); // For debugging
break;
case MODE_ERROR:
reset_all(state);
break;
case MODE_VIEW_RESULTS:
break;
}
break;
case EVENT_ALARM_LONG_PRESS:
switch (state->mode) {
case MODE_ENTERING_FIRST_NUM:
reset_to_zero(&state->first_num);
break;
case MODE_ENTERING_SECOND_NUM:
reset_to_zero(&state->second_num);
break;
case MODE_ERROR:
reset_all(state);
break;
case MODE_CHOOSING:
case MODE_VIEW_RESULTS:
break;
}
break;
case EVENT_MODE_BUTTON_DOWN:
break;
case EVENT_MODE_BUTTON_UP:
if (state->mode == MODE_ERROR) {
reset_all(state);
} else if (state->mode == MODE_ENTERING_FIRST_NUM &&
state->first_num.hundredths == 0 &&
state->first_num.tenths == 0 &&
state->first_num.ones== 0 &&
state->first_num.tens == 0 &&
state->first_num.hundreds == 0 &&
state->first_num.thousands == 0) {
movement_move_to_next_face();
} else {
// Reset the placeholder and proceed to the next MODE
state->placeholder = PLACEHOLDER_ONES;
state->mode = (state->mode + 1) % 4;
// When looping back to MODE_ENTERING_FIRST_NUM, reuse the
// previous calculation's results as the next calculation's
// first_num; also reset other numbers
if (state->mode == MODE_ENTERING_FIRST_NUM) {
state->first_num = state->result;
reset_to_zero(&state->second_num);
reset_to_zero(&state->result);
}
}
break;
case EVENT_MODE_LONG_PRESS:
// Move to next face if first number is 0
if (state->first_num.hundredths == 0 &&
state->first_num.tenths == 0 &&
state->first_num.ones== 0 &&
state->first_num.tens == 0 &&
state->first_num.hundreds == 0 &&
state->first_num.thousands == 0) {
movement_move_to_face(0);
// otherwise, start over
} else {
reset_all(state);
}
break;
case EVENT_TIMEOUT:
movement_request_tick_frequency(1);
movement_move_to_face(0);
break;
default:
return movement_default_loop_handler(event, settings);
}
return true;
}
void simple_calculator_face_resign(movement_settings_t *settings, void *context) {
(void) settings;
(void) context;
movement_request_tick_frequency(1);
}