sensor-watch/movement/watch_faces/settings/nanosec_face.c

377 lines
14 KiB
C

/*
* MIT License
*
* Copyright (c) 2022 Mikhail Svarichevsky https://3.14.by/
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "thermistor_driver.h"
#include "nanosec_face.h"
#include "filesystem.h"
#include "watch_utility.h"
int16_t freq_correction_residual = 0; // Dithering 0.1ppm correction, does not need to be configured.
int16_t freq_correction_previous = -30000;
#define dithering 31
nanosec_state_t nanosec_state;
#define nanosec_max_screen 7
int8_t nanosec_screen = 0;
bool nanosec_changed = false; // We try to avoid saving settings when no changes were made, for example when just browsing through face
const float voltage_coefficient = 0.241666667 * dithering; // 10 * ppm/V. Nominal frequency is at 3V.
static void nanosec_init_profile(void) {
nanosec_changed = true;
nanosec_state.correction_cadence = 10;
watch_date_time date_time = watch_rtc_get_date_time();
nanosec_state.last_correction_time = watch_utility_date_time_to_unix_time(date_time, 0);
// init data after changing profile - do that once per profile selection
switch (nanosec_state.correction_profile) {
case 0: // No tempco, no dithering
nanosec_state.freq_correction = 0;
nanosec_state.center_temperature = 2500;
nanosec_state.quadratic_tempco = 0;
nanosec_state.cubic_tempco = 0;
nanosec_state.aging_ppm_pa = 0;
break;
case 1: // No tempco, with dithering
nanosec_state.freq_correction = 0;
nanosec_state.center_temperature = 2500;
nanosec_state.quadratic_tempco = 0;
nanosec_state.cubic_tempco = 0;
nanosec_state.aging_ppm_pa = 0;
break;
case 2: // Datasheet correction
nanosec_state.freq_correction = 0;
nanosec_state.center_temperature = 2500;
nanosec_state.quadratic_tempco = 3400;
nanosec_state.cubic_tempco = 0;
nanosec_state.aging_ppm_pa = 0;
break;
case 3: // Datasheet correction + cubic coefficient
nanosec_state.freq_correction = 0;
nanosec_state.center_temperature = 2500;
nanosec_state.quadratic_tempco = 3400;
nanosec_state.cubic_tempco = 1360;
nanosec_state.aging_ppm_pa = 0;
break;
case 4: // Full custom
nanosec_state.freq_correction = 1768;
nanosec_state.center_temperature = 2653;
nanosec_state.quadratic_tempco = 4091;
nanosec_state.cubic_tempco = 1359;
nanosec_state.aging_ppm_pa = 0;
break;
}
}
static void nanosec_internal_write_RTC_correction(int16_t value, int16_t sign) {
if (sign == 0) {
if (value == freq_correction_previous)
return; // Do not write same correction value twice
freq_correction_previous = value;
} else {
if (value == -freq_correction_previous)
return; // Do not write same correction value twice
freq_correction_previous = -value;
}
watch_rtc_freqcorr_write(value, sign);
}
// Receives clock correction, already corrected for temperature and battery voltage, multiplied by "dithering"
static void apply_RTC_correction(int16_t correction) {
correction += freq_correction_residual;
int32_t correction_lr = (int32_t)correction * 2 / dithering; // int division
if (correction_lr & 1) {
if (correction_lr > 0) {
correction_lr++;
} else {
correction_lr--;
}
}
correction_lr >>= 1;
freq_correction_residual = correction - correction_lr * dithering;
// Warning! Freqcorr is not signed int8!!
// First we clamp it to 8-bit range
if (correction_lr > 127) {
nanosec_internal_write_RTC_correction(127, 0);
} else if (correction_lr < -127) {
nanosec_internal_write_RTC_correction(127, 1);
} else if (correction_lr < 0) {
nanosec_internal_write_RTC_correction(abs(correction_lr), 1);
} else { // correction
nanosec_internal_write_RTC_correction(correction_lr, 0);
}
}
// User-related saves
void nanosec_ui_save(void) {
if (nanosec_changed)
nanosec_save();
}
// This is low-level save function, that can be used by other faces
void nanosec_save(void) {
if (nanosec_state.correction_profile == 0) {
freq_correction_residual = 0;
apply_RTC_correction(nanosec_state.freq_correction * 1.0f * dithering / 100); // Will be divided by dithering inside, final resolution is mere 1ppm
}
filesystem_write_file("nanosec.ini", (char*)&nanosec_state, sizeof(nanosec_state));
nanosec_changed = false;
}
void nanosec_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) {
(void) watch_face_index;
(void) settings;
if (*context_ptr == NULL) {
if (filesystem_get_file_size("nanosec.ini") != sizeof(nanosec_state)) {
// No previous ini or old version of ini file - create new config file
nanosec_state.correction_profile = 3;
nanosec_init_profile();
nanosec_ui_save();
} else {
filesystem_read_file("nanosec.ini", (char*)&nanosec_state, sizeof(nanosec_state));
}
freq_correction_residual = 0;
nanosec_screen = 0;
*context_ptr = (void *)1; // No need to re-read from filesystem when exiting low power mode
}
}
void nanosec_face_activate(movement_settings_t *settings, void *context) {
(void) settings;
(void) context;
// Handle any tasks related to your watch face coming on screen.
nanosec_changed = false;
}
static void nanosec_update_display() {
char buf[14];
switch (nanosec_screen) {
case 0:
sprintf(buf, "FC %6d", nanosec_state.freq_correction);
break;
case 1:
sprintf(buf, "T0 %6d", nanosec_state.center_temperature);
break;
case 2:
sprintf(buf, "2C %6d", nanosec_state.quadratic_tempco);
break;
case 3:
sprintf(buf, "3C %6d", nanosec_state.cubic_tempco);
break;
case 4: // Profile
sprintf(buf, "PR P%1d", nanosec_state.correction_profile);
break;
case 5: // Cadence
sprintf(buf, "CD %2d", nanosec_state.correction_cadence);
break;
case 6: // Aging
sprintf(buf, "AA %6d", nanosec_state.aging_ppm_pa);
break;
}
watch_display_string(buf, 0);
}
static void value_increase(int16_t delta) {
nanosec_changed = true;
switch (nanosec_screen) {
case 0:
nanosec_state.freq_correction += delta;
break;
case 1:
nanosec_state.center_temperature += delta;
break;
case 2:
nanosec_state.quadratic_tempco += delta;
break;
case 3:
nanosec_state.cubic_tempco += delta;
break;
case 4: // Profile
nanosec_state.correction_profile = (nanosec_state.correction_profile + delta) % nanosec_profile_count;
// if ALARM decreases profile below 0, roll back around
if (nanosec_state.correction_profile < 0) {
nanosec_state.correction_profile += nanosec_profile_count;
}
break;
case 5: // Cadence
switch (nanosec_state.correction_cadence) {
case 1:
nanosec_state.correction_cadence = (delta > 0) ? 5 : 60;
break;
case 5:
nanosec_state.correction_cadence = (delta > 0) ? 10 : 1;
break;
case 10:
nanosec_state.correction_cadence = (delta > 0) ? 20 : 5;
break;
case 20:
nanosec_state.correction_cadence = (delta > 0) ? 60 : 10;
break;
case 60:
nanosec_state.correction_cadence = (delta > 0) ? 1 : 20;
break;
}
break;
case 6: // Aging
nanosec_state.aging_ppm_pa += delta;
break;
}
nanosec_update_display();
}
static void nanosec_next_edit_screen(void) {
nanosec_screen = (nanosec_screen + 1) % nanosec_max_screen;
nanosec_update_display();
}
float nanosec_get_aging() // Returns aging correction in ppm
{
watch_date_time date_time = watch_rtc_get_date_time();
float years = (watch_utility_date_time_to_unix_time(date_time, 0) - nanosec_state.last_correction_time) / 31536000.0f; // Years passed since finetune
return years*nanosec_state.aging_ppm_pa/100.0f;
}
bool nanosec_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
(void) settings;
(void) context;
switch (event.event_type) {
case EVENT_ACTIVATE:
// Show your initial UI here.
nanosec_screen = 0; // Start at page 0
nanosec_update_display();
break;
case EVENT_TICK:
break;
case EVENT_MODE_BUTTON_UP:
if (nanosec_screen == 0) { // we can exit face only on the 0th page
nanosec_ui_save();
movement_move_to_next_face();
} else {
nanosec_next_edit_screen();
}
break;
case EVENT_MODE_LONG_PRESS:
nanosec_next_edit_screen();
break;
case EVENT_LIGHT_BUTTON_UP:
value_increase(1);
break;
case EVENT_LIGHT_LONG_PRESS:
if (nanosec_screen == 4) { // If we are in profile - apply profiles
nanosec_init_profile();
nanosec_screen = 0;
nanosec_update_display();
} else {
value_increase(50);
}
break;
case EVENT_ALARM_BUTTON_UP:
value_increase(-1);
break;
case EVENT_ALARM_LONG_PRESS:
if (nanosec_screen == 4) { // If we are in profile - still decrease by 1
value_increase(-1);
} else {
value_increase(-50);
}
break;
case EVENT_TIMEOUT:
// Your watch face will receive this event after a period of inactivity. If it makes sense to resign,
// you may uncomment this line to move back to the first watch face in the list:
// movement_move_to_face(0);
break;
case EVENT_LOW_ENERGY_UPDATE:
// If you did not resign in EVENT_TIMEOUT, you can use this event to update the display once a minute.
// Avoid displaying fast-updating values like seconds, since the display won't update again for 60 seconds.
// You should also consider starting the tick animation, to show the wearer that this is sleep mode:
// watch_start_tick_animation(500);
break;
case EVENT_BACKGROUND_TASK:
// Here we measure temperature and do main frequency correction
thermistor_driver_enable();
float temperature_c = thermistor_driver_get_temperature();
float voltage = (float)watch_get_vcc_voltage() / 1000.0;
thermistor_driver_disable();
// L22 correction scaling is 0.95367ppm per 1 in FREQCORR
// At wrong temperature crystall starting to run slow, negative correction will speed up frequency to correct
// Default 32kHz correciton factor is -0.034, centered around 25°C
float dt = temperature_c - nanosec_state.center_temperature / 100.0;
int16_t correction = round((
nanosec_state.freq_correction / 100.0f * dithering +
(-nanosec_state.quadratic_tempco / 100000.0 * dithering) * dt * dt +
(nanosec_state.cubic_tempco / 10000000.0 * dithering) * dt * dt * dt +
(voltage - 3.0) * voltage_coefficient +
nanosec_get_aging() * dithering
) / 0.95367); // 1 correction unit is 0.095367ppm.
apply_RTC_correction(correction);
break;
case EVENT_LIGHT_BUTTON_DOWN:
// don't light up every time light is hit
break;
default:
movement_default_loop_handler(event, settings);
break;
}
// return true if the watch can enter standby mode. If you are PWM'ing an LED or buzzing the buzzer here,
// you should return false since the PWM driver does not operate in standby mode.
return true;
}
void nanosec_face_resign(movement_settings_t *settings, void *context) {
(void) settings;
(void) context;
nanosec_ui_save();
}
// Background freq correction
bool nanosec_face_wants_background_task(movement_settings_t *settings, void *context) {
(void) settings;
(void) context;
if (nanosec_state.correction_profile == 0)
return 0; // No need for background correction if we are on profile 0 - static hardware correction.
watch_date_time date_time = watch_rtc_get_date_time();
return date_time.unit.minute % nanosec_state.correction_cadence == 0;
}