sensor-watch/movement/watch_faces/complication/planetary_time_face.c
2023-04-16 10:49:03 -04:00

339 lines
14 KiB
C

/*
* MIT License
*
* Copyright (c) 2023 Tobias Raayoni Last / @randogoth
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "sunriset.h"
#include "watch.h"
#include "watch_utility.h"
#include "planetary_time_face.h"
#if __EMSCRIPTEN__
#include <emscripten.h>
#endif
// STATIC FUNCTIONS AND CONSTANTS /////////////////////////////////////////////
/** @brief Planetary rulers in the Chaldean order from slowest to fastest
* @details Planetary rulers in the Chaldean order from slowest to fastest:
* Jupiter, Mars, Sun, Venus, Mercury, Moon
*/
static const char planets[7][3] = {"Sa", "Ju", "Ma", "So", "Ve", "Me", "Lu"}; // Latin
static const char planetes[7][3] = {"Ch", "Ze", "Ar", "He", "Af", "Hr", "Se"}; // Greek
/** @brief Ruler of each weekday for easy lookup
*/
static const uint8_t plindex[7] = {3, 6, 2, 5, 1, 4, 0}; // day ruler index
/** @brief Astrological symbol for each planet
*/
static void _planetary_icon(uint8_t planet) {
watch_clear_pixel(0, 13);
watch_clear_pixel(0, 14);
watch_clear_pixel(1, 13);
watch_clear_pixel(1, 14);
watch_clear_pixel(1, 15);
watch_clear_pixel(2, 13);
watch_clear_pixel(2, 14);
watch_clear_pixel(2, 15);
switch (planet) {
case 0: // Saturn
watch_set_pixel(0, 14);
watch_set_pixel(2, 14);
watch_set_pixel(1, 15);
watch_set_pixel(2, 13);
break;
case 1: // Jupiter
watch_set_pixel(0, 14);
watch_set_pixel(1, 15);
watch_set_pixel(1, 14);
break;
case 2: // Mars
watch_set_pixel(2, 14);
watch_set_pixel(2, 15);
watch_set_pixel(1, 15);
watch_set_pixel(2, 13);
watch_set_pixel(1, 13);\
break;
case 3: // Sol
watch_set_pixel(0, 14);
watch_set_pixel(2, 14);
watch_set_pixel(1, 13);
watch_set_pixel(2, 13);
watch_set_pixel(0, 13);
watch_set_pixel(2, 15);
break;
case 4: // Venus
watch_set_pixel(0, 14);
watch_set_pixel(0, 13);
watch_set_pixel(1, 13);
watch_set_pixel(1, 15);
watch_set_pixel(1, 14);
break;
case 5: // Mercury
watch_set_pixel(0, 14);
watch_set_pixel(1, 13);
watch_set_pixel(1, 14);
watch_set_pixel(1, 15);
watch_set_pixel(2, 15);
break;
case 6: // Luna
watch_set_pixel(2, 14);
watch_set_pixel(2, 15);
watch_set_pixel(2, 13);
break;
}
}
/** @details solar phase can be a day phase between sunrise and sunset or an alternating night phase.
* This function calculates the start and end of the current phase based on a given geographic location.
*/
static void _planetary_solar_phase(movement_settings_t *settings, planetary_time_state_t *state) {
uint8_t phase;
double sunrise, sunset;
uint32_t now_epoch, sunrise_epoch, sunset_epoch, midnight_epoch;
movement_location_t movement_location = (movement_location_t) watch_get_backup_data(1);
// check if we have a location. If not, display error
if (movement_location.reg == 0) {
watch_display_string(" no Loc", 0);
state->no_location = true;
return;
}
// location detected
state->no_location = false;
watch_date_time date_time = watch_rtc_get_date_time(); // the current local date / time
watch_date_time utc_now = watch_utility_date_time_convert_zone(date_time, movement_timezone_offsets[settings->bit.time_zone] * 60, 0); // the current date / time in UTC
watch_date_time scratch_time; // scratchpad, contains different values at different times
watch_date_time midnight;
scratch_time.reg = midnight.reg = utc_now.reg;
midnight.unit.hour = midnight.unit.minute = midnight.unit.second = 0; // start of the day at midnight
// get location coordinate
int16_t lat_centi = (int16_t)movement_location.bit.latitude;
int16_t lon_centi = (int16_t)movement_location.bit.longitude;
double lat = (double)lat_centi / 100.0;
double lon = (double)lon_centi / 100.0;
// save UTC offset
state->utc_offset = ((double)movement_timezone_offsets[settings->bit.time_zone]) / 60.0;
// get UNIX epoch time
now_epoch = watch_utility_date_time_to_unix_time(utc_now, 0);
midnight_epoch = watch_utility_date_time_to_unix_time(midnight, 0);
// calculate sunrise and sunset of current day in decimal hours after midnight
sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
// calculate sunrise and sunset UNIX timestamps
sunrise_epoch = midnight_epoch + sunrise * 3600;
sunset_epoch = midnight_epoch + sunset * 3600;
// by default we assume it is daytime (phase 1) between sunrise and sunset
phase = 1;
state->night = false;
state->phase_start = sunrise_epoch;
state->phase_end = sunset_epoch;
// night time calculations
if ( now_epoch < sunrise_epoch && now_epoch < sunset_epoch ) phase = 0; // morning before dawn
if ( now_epoch > sunrise_epoch && now_epoch >= sunset_epoch ) phase = 2; // evening after dusk
// phase 0: we are before sunrise
if ( phase == 0) {
// go back to yesterday and calculate sunset
midnight_epoch -= 86400;
scratch_time = watch_utility_date_time_from_unix_time(midnight_epoch, 0);
sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
sunset_epoch = midnight_epoch + sunset * 3600;
// we are still in yesterday's night hours
state->night = true;
state->phase_start = sunset_epoch;
state->phase_end = sunrise_epoch;
}
// phase 2: we are after sunset
if ( phase == 2) {
// skip to tomorrow and calculate sunrise
midnight_epoch += 86400;
scratch_time = watch_utility_date_time_from_unix_time(midnight_epoch, 0);
sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
sunrise_epoch = midnight_epoch + sunrise * 3600;
// we are still in yesterday's night hours
state->night = true;
state->phase_start = sunset_epoch;
state->phase_end = sunrise_epoch;
}
// calculate the duration of a planetary second during this solar phase
// and convert to Hertz so we can call a faster tick rate
state->freq = (1 / ((double)( state->phase_end - state->phase_start ) / 43200));
}
/** @details A planetary hour is one of exactly twelve hours of a solar phase. Its length varies.
* This function calculates the current planetary hour and divides it up into relative minutes and seconds.
* It also calculates the current planetary ruler of the hour and of the day.
*/
static void _planetary_time(movement_event_t event, movement_settings_t *settings, planetary_time_state_t *state) {
char buf[14];
char ruler[3];
double night_hour_count = 0.0;
uint8_t weekday, planet, planetary_hour;
double hour_duration, current_hour, current_minute, current_second;
watch_set_colon();
// get current time and convert to UTC
state->scratch = watch_utility_date_time_convert_zone(watch_rtc_get_date_time(), movement_timezone_offsets[settings->bit.time_zone] * 60, 0);
// when current phase ends calculate the next phase
if ( watch_utility_date_time_to_unix_time(state->scratch, 0) >= state->phase_end ) {
_planetary_solar_phase(settings, state);
return;
}
if (settings->bit.clock_mode_24h) watch_set_indicator(WATCH_INDICATOR_24H);
// PM for night hours, otherwise the night hours are counted from 13
if ( state->night ) {
if (settings->bit.clock_mode_24h) night_hour_count = 12;
else watch_set_indicator(WATCH_INDICATOR_PM);
}
// calculate the duration of a planetary hour during this solar phase
hour_duration = (( state->phase_end - state->phase_start)) / 12.0;
// which planetary hour are we in?
// RTC only provides full second precision, so we have to manually add subseconds with each tick
current_hour = ((( watch_utility_date_time_to_unix_time(state->scratch, 0) ) + event.subsecond * 0.11111111) - state->phase_start ) / hour_duration;
planetary_hour = floor(current_hour) + ( state->night ? 12 : 0 );
current_hour += night_hour_count; //adjust for 24hr display
current_minute = modf(current_hour, &current_hour) * 60.0;
current_second = modf(current_minute, &current_minute) * 60.0;
// the day changes after sunrise, so if we are at night it is yesterday's planetary day
// hence we take the datetime object of when the last solar phase started as the current day
// and then fill in the hours and minutes
state->scratch = watch_utility_date_time_from_unix_time(state->phase_start, 0);
state->scratch.unit.hour = floor(current_hour);
state->scratch.unit.minute = floor(current_minute);
state->scratch.unit.second = (uint8_t)floor(current_second) % 60;
// what weekday is it (0 - 6)
weekday = watch_utility_get_iso8601_weekday_number(state->scratch.unit.year, state->scratch.unit.month, state->scratch.unit.day) - 1;
// planetary ruler of the hour or the day
if ( state->day_ruler ) planet = plindex[weekday];
else planet = ( plindex[weekday] + planetary_hour ) % 7;
// latin or greek ruler names or astrological symbol
if ( state->ruler == 0 ) strncpy(ruler, planets[planet], 3);
if ( state->ruler == 1 ) strncpy(ruler, planetes[planet], 3);
if ( state->ruler == 2 ) strncpy(ruler, " ", 3);
// display planetary time with ruler of the hour or ruler of the day
if ( state->day_ruler ) sprintf(buf, "%s d%2d%02d%02d", ruler, state->scratch.unit.hour, state->scratch.unit.minute, state->scratch.unit.second);
else sprintf(buf, "%s h%2d%02d%02d", ruler, state->scratch.unit.hour, state->scratch.unit.minute, state->scratch.unit.second);
watch_display_string(buf, 0);
if ( state->ruler == 2 ) _planetary_icon(planet);
}
// PUBLIC WATCH FACE FUNCTIONS ////////////////////////////////////////////////
void planetary_time_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) {
(void) watch_face_index;
(void) settings;
if (*context_ptr == NULL) {
*context_ptr = malloc(sizeof(planetary_time_state_t));
memset(*context_ptr, 0, sizeof(planetary_time_state_t));
}
}
void planetary_time_face_activate(movement_settings_t *settings, void *context) {
(void) settings;
if (watch_tick_animation_is_running()) watch_stop_tick_animation();
#if __EMSCRIPTEN__
int16_t browser_lat = EM_ASM_INT({ return lat; });
int16_t browser_lon = EM_ASM_INT({ return lon; });
if ((watch_get_backup_data(1) == 0) && (browser_lat || browser_lon)) {
movement_location_t browser_loc;
browser_loc.bit.latitude = browser_lat;
browser_loc.bit.longitude = browser_lon;
watch_store_backup_data(browser_loc.reg, 1);
}
#endif
planetary_time_state_t *state = (planetary_time_state_t *)context;
// calculate phase
_planetary_solar_phase(settings, state);
}
bool planetary_time_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
planetary_time_state_t *state = (planetary_time_state_t *)context;
switch (event.event_type) {
case EVENT_ACTIVATE:
_planetary_time(event, settings, state);
if ( state->freq > 1 )
// for hours with shorter seconds let's increase the tick to not skip seconds in the display
movement_request_tick_frequency( 8 );
break;
case EVENT_TICK:
_planetary_time(event, settings, state);
break;
case EVENT_LIGHT_BUTTON_UP:
state->ruler = (state->ruler + 1) % 3;
break;
case EVENT_ALARM_BUTTON_UP:
// Just in case you have need for another button.
state->day_ruler = !state->day_ruler;
break;
case EVENT_LOW_ENERGY_UPDATE:
watch_start_tick_animation(500);
break;
default:
return movement_default_loop_handler(event, settings);
}
return true;
}
void planetary_time_face_resign(movement_settings_t *settings, void *context) {
(void) settings;
(void) context;
movement_request_tick_frequency( 1 );
}